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Our world is full of uncertainties: measurement errors, modeling errors, or uncertainty due to test-data 
being out-of-distribution are some examples. Machine learning systems are increasingly being used in 
crucial applications such as medical decision making and autonomous vehicle control: in these 
applications, mistakes due to uncertainties can be life threatening.

Deep learning have demonstrated astonishing results for many different tasks. But in general, predictions 
are deterministic and give only a point estimate as output. A trained model may seem confident in 
predictions where the uncertainty is high. To cope with uncertainties, and make decisions that are 
reasonable and safe under realistic circumstances, AI systems need to be developed with uncertainty 
strategies in mind. Machine learning approaches with uncertainty estimates can enable active learning: an 
acquisition function can be based on model uncertainty to guide in data collection and tagging. It can also 
be used to improve sample efficiency for reinforcement learning approaches.

In this talk, we will connect deep learning with Bayesian machine learning, and go through some example 
approaches to coping with, and leveraging, the uncertainty in data and in modelling, to produce better AI 
systems in real world scenarios.
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Deep learning

● Nested transformations
● h(x) = a(xW+b) 
● End to end training: backpropagation, optimization
● a: activation functions

○ Logistic, tanh, relu
○ Classification: Softmax output

● Softmax outputs: cross-entropy loss
○ Probabilistic interpretation



Out of distribution data
● Train: cats vs dogs
● At test time appears

Training data:
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Out of distribution data
● Train: cats vs dogs
● At test time appears a bird image
● What to do?
● What will the softmax do

Training data:

Testing data:?



Out of domain data (ctd)

Image By Yarin Gal.

Mauna Loa CO 2 concentrations dataset



Uncertainty
● Aleatoric

○ Noise inherent in data observations
○ Uncertainty in data or sensor errors
○ Will not decrease with larger data
○ Irreducible error/Bayes error

● Epistemic
○ Caused by the model

■ Parameters
■ Structure

○ Lack of knowledge of generating distribution
○ Reduced with increasing data

Image by Michael Kana.



Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. In Advances in neural information processing systems (pp. 5574-5584).

Prediction

Ground truthInput

Aleatoric uncertainty Epistemic uncertainty



Softmax outputs
● A cat-dog classifier knows nothing 

about warblers
● Outputs from trained softmax layer 

do not show model confidence

Image By Yarin Gal.



Calibrating the softmax
● Expected Calibration Error:             

"confidence" matches accuracy
○ E.g. of 100 datapoints where confidence is 0.8, 80 of 

them should be correct.

● Model calibration declines, due to
○ Increased model capacity
○ Batch norm (allows for larger models)
○ Decreased weight decay
○ Overfitting to NLL loss (but not accuracy)

● Solutions
○ Histogram binning
○ Isotonic regression: piecewise constant function
○ Bayesian binning into quantiles: distribution over 

binning schemes
Guo, C., et al. On calibration of modern neural networks. arXiv:1706.04599. ICML 2017.



Deep ensembles

Balaji, L., Pritzel, A., Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. NIPS. 2017.

MSE (5 ensemble) NLL (single) NLL (single)
+adversarial

NLL (5 ensemble)
+adversarial



Monte-Carlo Dropout
● Independently, with prob p, set each input to zero
● Exponential ensemble
● Monte-Carlo dropout:

○ Run network several times with different random seed.

● Equivalent to prior
○ (L2 weight decay equivalent to Gaussian prior).

Gal, Y., Ghahramani, Z., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2018.



MC-Dropout for

● Thompson sampling
● Data efficiency

Gal, Y., Ghahramani, Z., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2018.

Deep RLActive learning
● High uncertainty - 

high information
● Data efficiency



Density mixtures networks
● Distributional parameter estimation
● Regression model with Gaussian output

○ Train using NLL loss

● Enough mixture components
○ → arbitrary distribution approximation

Bishop, C.M., Mixture density networks, 1994.



Recurrent density networks: blood glucose predictions

blood glucose test data (Ohio T1DM dataset) 

 

Martinsson, J., Schliep, A., Eliasson, B., Mogren, O., Blood glucose prediction with variance estimation using recurrent neural networks.Journal of Healthcare Informatics Research. 2020.

stochastic period length

 

stochastic amplitudesynthetic square wave data



Bayesian machine learning
● Encoding and incorporating prior belief

○ Distribution over model parameters

● Posterior over model parameters
● Inference: marginalizing over latent parameters
● Computationally demanding

○ Evidence term requires expensive integral
○ Simple models: Conjugate priors
○ Approximate Bayesian methods:

■ Variational inference
■ Markov chain Monte Carlo

p(model | new data)  = 
p(new data data | model) · p(model) 

p(new data)

PriorLikelihood

Posterior

Evidence

Or marginal likelihood



Bayesian modelling

expectation under the posterior distribution on 
weights is equivalent to using an ensemble of an 

uncountably infinite number of models



Variational inference
● True posterior p(w|X,Y) is intractable in general
● Define an approximating                           

variational distribution qθ.
● Minimize KL btw q and p wrt θ.
● Predictive distribution
● Equivalent to maximizing the                    

evindence lower bound:



Bayesian neural networks
● A prior on each weight

○ Random variable
○ Distribution over possible values

● Variational approximations
○ Numerical integration over variational 

posterior
○ Bayes by Backprop:

■ Minimize variational free energy 
(ELBO on marginal likelihood)

● Improve generalization

MacKay, D.J.C., A Practical Bayesian Framework for Backpropagation Networks, Neural Computation, 1992,
Graves, A., Practical Variational Inference for Neural Networks, NIPS 2011

Blundell, et.al., Weight uncertainty in neural networks, ICML 2015

Regression of noisy data with interquatile ranges. Black
crosses are training samples. Red lines are median predictions. 

Blue/purple region is interquartile range.

Bayes by Backprop
standard 

neural network



Note on Bayesian methods

Limitations:

● Subjective. Assumptions.
● Computationally demanding
● Use of approximations weakens the 

coherence argument

Advantages:

● Coherent
● Conceptually straightforward
● Modular
● Useful predictions

Zoubin Ghahramani



Monte-Carlo Dropout
● Approximate posterior.
● MC Dropout is equivalent to an approximation of a deep Gaussian process.

Gal, Y., Ghahramani, Z., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2018.



Stationary Activations for Uncertainty
Calibration in Deep Learning
● Matérn activation function
● MC-Dropout

Meronen, L., Irwanto, C., & Solin, A.  Stationary Activations for Uncertainty Calibration in Deep Learning. arXiv preprint arXiv:2010.09494. NeurIPS 2020.

White: Confident
Grey: Uncertain
Black: Decision boundary
Points: Training data



Causal-Effect Inference Failure Detection

● Counterfactual deep learning models
● Epistemic uncertainty - covariate shift
● MC Dropout

Jesson, A., Mindermann, S., Shalit, U., Gal, Y., Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models, NeurIPS 2020



NeurIPS 2020
Antorán et.al., Depth Uncertainty in Neural Networks

Wenzel, et.al., Hyperparameter Ensembles for Robustness and Uncertainty Quantification

Valdenegro-Toro, et.al., Deep Sub-Ensembles for Fast Uncertainty Estimation in Image Classification

Lindinger, et.al., Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties

Liu, et.al., Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness



Getting started
● Bayesian Layers: A module for neural network uncertainty (Tran, et.al., 2019)

○ Implements variational approximation
● Edwardlib: A library for probabilistic modeling, inference, and criticism. (edwardlib.org)

http://edwardlib.org/
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