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What is physics?

Physics (from Ancient Greek: φυσική 
(ἐπιστήμη), romanized: physikḗ 
(epistḗmē), lit. 'knowledge of nature', 
from φύσις phýsis 'nature')[1][2][3] is the 
natural science that studies matter,[4] its 
motion and behavior through space and 
time, and the related entities of energy 
and force.
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(Today: classical mechanics).



What is modelling?

Scientific modelling is a scientific activity, the aim of which is to make a 
particular part or feature of the world easier to understand, define, quantify, 
visualize, or simulate by referencing it to existing and usually commonly accepted 
knowledge.
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What is machine learning?
Machine learning algorithms build a 
mathematical model based on sample 
data, known as "training data", in order 
to make predictions or decisions without 
being explicitly programmed to do so.

Wikipedia, xkcd.com
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Machine learning for physics



Regression forests

Approximating Navier-Stokes equations on a Lagrangian system (momentum, mass, energy)

Predicting acceleration (individual forces and the incompressibility constraint)

Training data from PBF solver (position based fluids)
Ladicky, et.al. (2015)



Convnets, LSTMS

“Deep fluids”

2D, 3D

Turbulent smoke, “gooey” liquids

Kim, et.al. (Eurographics, 2019)

“Latent Space Physics: Towards Learning the 
Temporal Evolution ofFluid Flow”

LSTM-CNN hybrid

Wiewel, et.al. (arxiv:1802.10123)



Graph networks

Vertex features, v

Edge features, e

Global features, u

Graph in, graph out

1. Message passing phase
2. Read out phase



Peter Battaglia



Peter Battaglia





Alex Gaunt, Microsoft Research

https://www.youtube.com/watch?v=NJEb5sqjv2w 

https://www.youtube.com/watch?v=NJEb5sqjv2w
















Interaction networks
Learning interactions and trajectories from 
simulations

Simulated data: n-body systems; balls 
bouncing in a box; and strings composed of 
springs that collide with rigid objects

Graph neural networks: Relation encoder 
MLP, object encoder MLP

Generalize to larger systems

Train on single-step, predict using roll-outs

Output: x,y velocity

Battaglia, et.al. (NeurIPS, 2016)

Objects: n-body objects, balls, walls, points masses that 
represented string elements
Object state: dynamic state component (e.g., position and 
velocity) and a static attribute component (e.g., mass, size, 
shape)

Relations: e.g., gravitational attraction, collisions, springs



Learning object interactions using video
Learning physics from video

2D data from simulator, drawn on top of images 
from CIFAR-10

Visual interaction network: 1.Visual encoder 
→2.Dynamics prediction →3.State decoder

(1.Convnet →2.MLP→3.Output layer)

Watters, et.al. (NeurIPS, 2017)



FFWD: Graph neural networks for physics simulations

3D Data from CFD simulators

Several kinds of particles, e.g. liquid, goop, sand, solid.

Generalize to new initial conditions, more particles, many 
timesteps.

Input particle state: position, 5 previous velocities, static 
material properties (e.g., water, sand, goop, rigid, boundary 
particle)

Edged: added to particle pairs at a connectivity radius < R

Output: particle acceleration (simulate using Euler integration)
Sanchez-Gonzalez, et.al. (arxiv:2002.09405)



Generated training data
Simulators used:

● BOXBATH: Flex (position-based dynamics method)
● WATER-3D: SPlisHSPlasH (SPH-based; strict volume preservation)
● Other: Taichi-MPM engine

Training:

● ?k particles
● 1 timestep

Test:

● 1k-85k particles (up to 43x training size)
● 5000 timesteps



Experiments



Simulations

https://sites.google.com/view/learning-to-simulate/home#h.p_hjnaJ6k8y0wo
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Ablations



Inferring system properties from simulations
Inverse modelling, infer system given data

Graph neural networks

Sanchez-Gonzalez, et.al. (ICML, 2018)



MeshGraphNets

● Mesh graph
● 1-2 orders of magnitude faster

Pfaff, et.al., Learning Mesh-Based Simulation 
with Graph Networks, arxiv: arXiv:2010.03409
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Videos:

● Alex Gaunt, GNNs: 
https://www.youtube.com/watch?v=cWIeTMklzNg&t=707s

● Gori, Message passing NNs: 
https://www.youtube.com/watch?v=NJEb5sqjv2w

● Peter Battaglia, Learning structured models of physics: 
https://www.youtube.com/watch?v=RwrzKtnSwrw

● Learning to simulate complex physics: 
https://sites.google.com/view/learning-to-simulate/home#h.p_hjn
aJ6k8y0wo 
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