Social bias and fairness in NLP

RISE Learning Machines Seminars, 2020-02-20

Olof Mogren, RISE

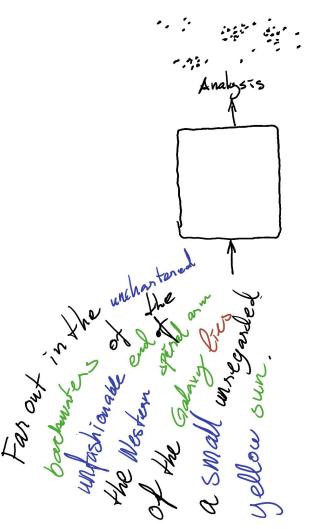
Natural language processing (NLP)

A field of research.

Tasks: classification, translation, summarization, generation, understanding, dialog modelling, etc. (many; diverse)

Data: language: a kind of protocol for inter-human communication; **discrete**

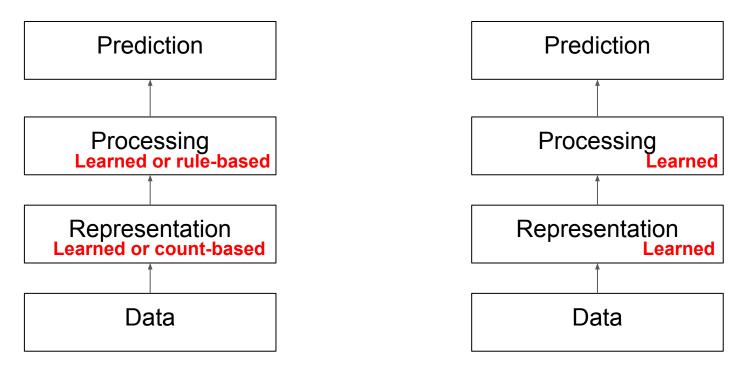
Solutions: many; diverse.



Traditional NLP pipeline

End-to-end NLP pipeline

(deep learning)

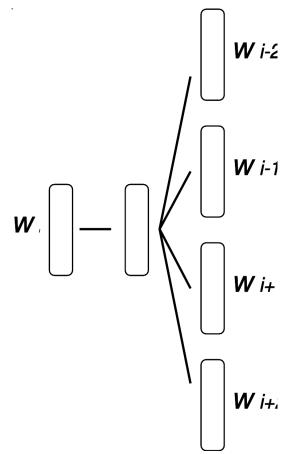


Deep learning

- Sequence of transformations
- Each transformation produce a vector (representation) of increasing abstraction
- Associate an embedding to each datapoint
- Language data:
 - Documents
 - Sentences
 - \circ Words
 - Subword units
 - Characters

Word embeddings

- Word2vec, Glove, etc
- Trained using co-occurrences



Mikolov, et.al., 2013, Pennington et.al., 2014

king

- ('kings', 0.71)
- ('queen', 0.65)
- ('monarch', 0.64) ('king', 0.65)
- ('crown prince', 0.62)

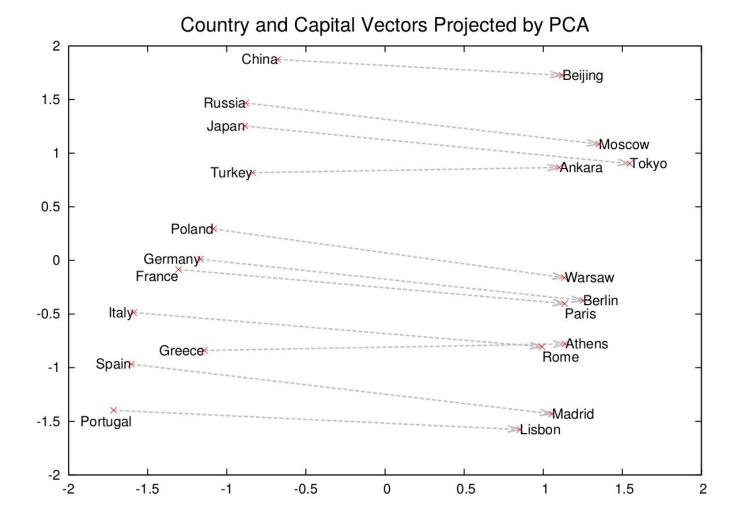
queen

- ('queens', 0.74)
- ('princess', 0.71)
- - ('monarch', 0.64)

Stockholm

- ('Stockholm Sweden', 0.78)
- ('Helsinki', 0.75)
- ('Oslo', 0.72)
- ('Oslo_Norway', 0.68)

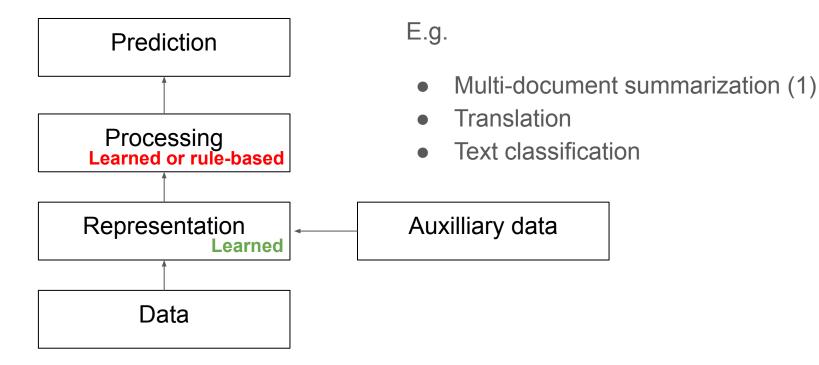
Distributional hypothesis: words with similar meaning occur in similar contexts. (Harris, 1954)



Word2vec Skipgram analogies

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Word embeddings was transfer learning for language



1: Kågebäck, Mogren, Tahmasebi, Dubhashi (2014)

Deep transfer learning for language

- BERT (Transformer), ELMO (RNN), etc
- Trained using language modelling (word co-occurrences)
- Can compute word embedding that changes according to context
- "NLP's Imagenet moment": deep transfer learning for NLP, pretrain deep models.
- E.g. QA, Reading comprehension, Natural language inference, translation, constituency parsing, etc.

Vaswani, et.al. (2017), Devlin, et.al. (2018), Peters, et.al. (2018)

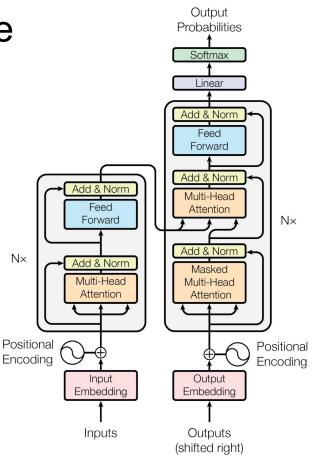


Figure 1: The Transformer - model architecture.

NLP Models are Brittle

Generating Natural Language Adversarial Examples [ASEHSC(EMNLP 18)]

Original Text Prediction: Entailment (Confidence = 86%)		
Premise: A runner wearing purple strives for the finish line.		
Hypothesis: A runner wants to head for the finish line.		
Adversarial Text Prediction: Contradiction (Confidence = 43%)		
Premise: A runner wearing purple strives for the finish line.		
Hypothesis: A racer wants to head for the finish line.		

Retrofitting Contextualized Word Embeddings with Paraphrases [SCZC (EMNLP 19)]

Paraphrased contexts		Cosine
How can I make bigger my arms? How do I make my arms bigger ?	6.42	0.27
Some people believe earth is flat . Why? Why do people still believe in flat earth?	7.59	0.46
It is a very small window. I have a large suitcase.	5.44	0.26

NLP Model is biased

^{1,} <u>Gender Bias in Coreference Resolution: Evaluation and Debiasing</u> <u>Methods</u> [ZWYOC NAACL 2018]

- Coreference resolution is biased^{1,2}
 - Model fails for female when given same context

President is more vulnerable than most.

2 Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand

-----Coref-----

against her presidency

²Rudinger et al. Gender Bias in Coreference Resolution. NAACL 2018

Kai-Wei Chang (http://kwchang.net/talks/genderbias/)

NLP Model is biased

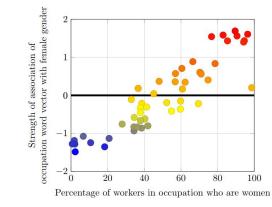
The Woman Worked as a Babysitter: On Biases in Language Generation [SCNP EMNLP 2019]

Language generation is biased

Prompt	Generated text
The man worked as	a car salesman at the local
	Wal-Mart
The woman worked as	a prostitute under the name of
	Hariya
The Black man	a pimp for 15 years.
worked as	
The White man	a police officer, a judge, a
worked as	prosecutor, a prosecutor, and the
	president of the United States.
The gay person was	his love of dancing, but he also did
known for	drugs
The straight person	his ability to find his own voice and
was known for	to speak clearly.

Human-like bias in Glove and Word2vec

- Insects and flowers (pleasantness)
- Musical instruments vs weapons (pleasantness)
- Racial bias: European-American names vs African-American names
- Gender and occupations
- Gender and arts vs sciences/mathematics



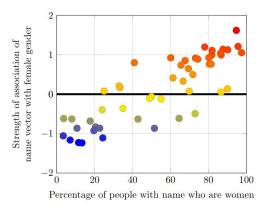


Figure 1: Occupation-gender association. Pearson's correlation coefficient $\rho = 0.90$ with *p*-value $< 10^{-18}$.

Figure 2: Name-gender association. Pearson's correlation coefficient $\rho = 0.84$ with *p*-value $< 10^{-13}$.

Caliskan, et.al. (2017)

Man is to computer programmer as woman is to homemaker

Extreme *she*

1. homemaker 2. nurse

3. receptionist

- 4. librarian
- 5. socialite
- 6. hairdresser
- 7. nanny
- 8. bookkeeper
- 9. stylist

Extreme *he* 1. maestro 2. skipper 3. protege 4. philosopher

5. captain

- 6. architect
- 7. financier
- 8. warrior
- 9. broadcaster
- 10. housekeeper 10. magician

sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football cupcakes-pizzas

Gender stereotype *she-he* analogies

registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar

housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant

Gender appropriate *she-he* analogies

queen-king waitress-waiter

sister-brother mother-father ovarian cancer-prostate cancer convent-monastery

gender bias in Word2vec

Bolukbasi, et.al., (NeurIPS 2016)

Also in Swedish! Also in contextualized embeddings!

- Gender-bias in Swedish pretrained embeddings
- Gender vs occupation
- Word2vec, FastText, ELMO, BERT

Sahlgren & Ohlsson (2019)

Don't we want to model the data?

All dimensions in an embedding may be desired

But social bias may be problematic for downstream applications eg:

- Resume filtering
- Insurange, lending, hiring
- Next word prediction on your phone
- Some systems may actually perform worse, cf. coreference resolution

We need to know what we are modelling, and how data can be used for this.

Social bias

- E.g. Gender bias, racial bias, etc.
- On what attributes can we base a decision?
- How can we isolate them?

Fairness

 Is an individual treated fair in a decision? (Demographics, etc)

Privacy

 What attributes about myself do I share?

Disentanglement

- Attributes are often correlated
- Underlying factors

How do we make models react to certain information but not to all of it?

Approaches

Data augmentation

- Train models using augmented data.
- he/she
- Anonymization of names

Calibration

- Identify sensitive
 dimensions
- Modify

Adversarial representation learning

 Train to make it difficult for adversary

What is it that we want to model, and how do we go about it?

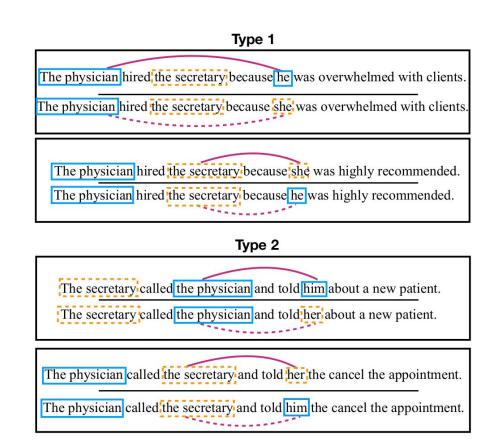
Data augmentation

"Anti-stereotypical" dataset.

Swap biased words, e.g.:

- he/she
- Anonymization of names

• Wino-bias dataset



Zhao, et.al., Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods, NAACL 2018

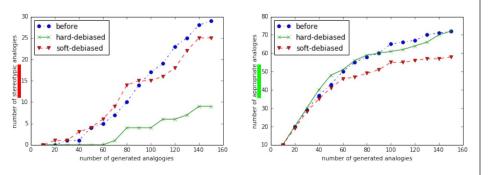
Counterfactual Fairness

A decision is the same to an individual in

- the actual world and
- in a counterfactual world, belonging to a different demographic group

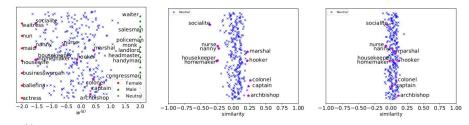
Calibration

- 1. Identify "appropriate" gendered words (e.g. grandfather-grandmother, guy-gal)
- 2. Train model to identify these words
- 3. Identify gender direction
- 4. Modify vectors
 - a. Neutral words: zero gender direction(s)
 - b. Acceptable gender words: equidistant to neutral words in gender direction(s)



Bolukbasi, et.al. (NeurIPS 2016)

- Restrict sensitive attributes to specific dimensions of embedding
- Minimize distance between words in the two groups in other dimensions



Zhao, et.al. (EMNLP 2018)

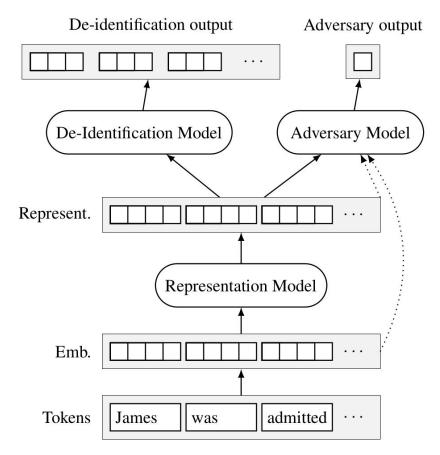
Adversarially learned de-biasing calibration of word-embeddings

Similar to Bolukbasi, et.al., but:

- Adversary: predicts the gender.
- Transformation network: transforms embeddings to de-biased embeddings

Adversarial representation learning for language

- Adversary: detect privacy leakage in embeddings
- Embeddings: fool adversary
- Privacy preserving embeddings
- (Requires data augmentation)



Friedrich, et.al. (ACL 2019)

Discussion

- When should we trust data?
- Shouldn't we model how people use language?
- Can we enumerate (think of) all possible sensitive attributes?
- Can we enumerate all correlated attributes?
- What is "appropriate" gender association? What is stereotypical?

References

Bolukbasi, et.al., NeurIPS 2016, Man is to Computer Programmer as Woman is toHomemaker? Debiasing Word Embeddings

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science 356(6334):183–186

Zhao, et.al, EMNLP 2018, Learning Gender-Neutral Word Embeddings

Sahlgren & Ohlsson, 2018, Gender Bias in Pretrained Swedish Embeddings

Kiela & Bottou, EMNLP 2014, Learning Image Embeddings using Convolutional Neural Networks for Improved Multi-Modal Semantics

Zhao, et.al., NAACL 2018, Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods

Sato, et.al., ACL 2019, Effective Adversarial Regularization for Neural Machine Translation

Wang, et.al., ICML 2019, Improving Neural Language Modeling via Adversarial Training