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META LEARNING
• “Learning to learn”

• Schmidthuber 1987, 1992, 1993 - nets modifying their own weights
• Schmidthuber 1997 - The Success Story Algorithm
• Daniel, et.al. 2016 - Reinforcement learning
• Santoro, et.al. 2016, Vinyals, et.al. 2016 - One-shot learning,
mem-augmented NNs (multi-task learning is generalization)
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BY GRADIENT DESCENT

L(φ) = Ef

[
T∑
t=1

wtf(θt)

]
where θt+1 = θt + gt ,[

gt

ht+1

]
= m(∇t,ht, φ) .

(1)

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Ho�man, David
Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas



COORDINATE-WISE LSTM OPTIMIZER

LSTM1...LSTMn have shared weights, but separate hidden states.

Andrychowicz, et.al., Learning to learn by gradient descent by gradient descent
(NIPS 2016)



LEARNING CURVES

Andrychowicz, et.al., Learning to learn by gradient descent by gradient descent
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MATCHING NETWORKS FOR ONE-SHOT LEARNING

• Related to metric learning

• Deep neural features
• Small labelled support set S,
• Larns to map S to a cassi�er c(x).
• Smay contain unseen classes!
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• S = (xi, yi)
k
i=1

• ŷ =
∑k

i=1 a(x̂, xi)yi
• (If a is a kernel, then this is a kernel
density estimator)

• Subsumes both KDE and kNN
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Z
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MATCHING NETWORKS: EXAMPLES

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan
Wierstra (NIPS 2016)



AUTOMATIC CHEMICAL DESIGN

• Search in molecular space is
challenging; large, discrete, and
unstructured

• Variational autoencoder
• Convert discrete representations to
and from continuous

• Optimize molecule properties
• Best paper award at Constructive
machine learning workshop at NIPS
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properties based on representation
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PHASED LSTM: STATE
VISUALIZATION


	Overview
	Questions
	Appendix

