BREAKTHROUGHS IN NEURAL MACHINE TRANSLATION

Olof Mogren

Chalmers University of Technology

2016-09-29

COMING SEMINARS

- Today: Olof Mogren
 Neural Machine Translation
- October 6: John Wiedenhoeft
 Fast Bayesian inference in Hidden Markov Models
 using Dynamic Wavelet Compression
- October 10: Haris Charalambos Themistocleous Linguistic, signal processing, and machine learning approaches in eliciting information form speech

http://www.cse.chalmers.se/research/lab/seminars/

n.one/

Progress in Machine Translation

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Phrase-based Statistical Machine Translation

A marvelous use of big data but ... it's mined out?!?

1519年600名西班牙人在墨西哥登陆,去征服几百万 人口的阿兹特克帝国,初次交锋他们损兵三分之二。

In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the first two-thirds of soldiers against their loss. translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds. translate.google.com (2014): 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash. translate.google.com (2016): 1519 600 Spaniards landed in Mexico, millions of people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.

WHAT IS NEURAL MT (NMT)?

The approach of modelling the entire MT process via one big artificial neural network.

http://mogren.one/

MODELLING LANGUAGE USING RNNs

- Language models: *P*(*word*_i|*word*₁,...,*word*_{i-1})
- Recurrent Neural Networks
- Gated additive sequence modelling: LSTM (and variants) <u>details</u>
- Fixed vector representation for sequences
- Use with beam-search for language generation

ENCODER-DECODER FRAMEWORK

• Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le, NIPS 2014

ENCODER-DECODER FRAMEWORK

- Sequence to Sequence Learning with Neural Networks Ilya Sutskever, Oriol Vinyals, Quoc V. Le, NIPS 2014
- Reversed input sentence!

• Neural Machine Translation by Jointly Learning to Align and Translate Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio - ICLR 2015

• Neural Machine Translation by Jointly Learning to Align and Translate Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio - ICLR 2015

• Neural Machine Translation by Jointly Learning to Align and Translate Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio - ICLR 2015

• Neural Machine Translation by Jointly Learning to Align and Translate Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio - ICLR 2015

ALIGNMENT - (MORE)

NEURAL MACHINE TRANSLATION, NMT

- End-to-end training
- Distributed representations
- Better exploitation of context

What's not on that list?

WHAT'S BEEN HOLDING NMT BACK?

- Limited vocabulary
 - Copying
 - Dictionary lookup
- Data requirements
- Computation
 - Training time
 - Inference time
 - Memory usage

RARE WORDS 1: SUBWORD UNITS

- Neural machine translation of rare words with subword units *Rico Sennrich and Barry Haddow and Alexandra Birch*
- A character-level decoder without explicit segmentation for neural machine translation *Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio, ACL 2016*

Byte-pair encoding (BPE):

aaabdaaabac	ZabdZabac	ZYdZYac	XdXac
	Z=aa	Y=ab	X=ZY
		Z=aa	Y=ab
			Z=aa

RARE WORDS 2: HYBRID CHAR/WORD NMT

- Achieving open vocabulary neural machine translation with hybrid word-character models Thang Luong and Chris Manning, ACL 2016.
- Hybrid architechture:
 - Word-based for most words
 - Character-based for rare words
 - 2 BLEU points improvement over copy mechanism

http://mogren.one/

Word-level (4 layers)

Effects of Vocabulary Sizes

n.one/

Rare Word Embeddings

Word & character-based embeddings.

179

n.one/

TRAINING WITH MONOLINGUAL DATA

- Improving neural machine translation models with monolingual data *Rico Sennrich, Barry Haddow, Alexandra Birch, ACL 2016.*
- Backtranslate monolingual data (with NMT model)
- Use backtranslated data as parallell training data

Enriching parallel data

Dummy source sentences

 She loves cute cats
 Elle aime les chats mignons
 (parallel)

 <null>
 Elle aime les chiens mignons
 (mono)

Small gain +0.4-1.0 BLEU. Difficult to add more mono data.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving Neural Machine Translation Models with Monolingual Data. ACL 2016.

n.one/

Enriching parallel data

• Synthetic source sentences

188

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving Neural Machine Translation Models with Monolingual Data. ACL 2016.

n.one/

Prevent Over-fitting

RESIDUAL DEEP LSTMS

- Deep recurrent models with fast-forward connections for neural machine translation: *Jie Zhou et.al., Baidu research, arXiv preprint, 1606.04199*
- Residual (skip) connections in depth
- 16 layers deep LSTM model

PUTTING IT ALL TOGETHER

- Google's neural machine translation system: Bridging the gap between human and machine translation Yonghui Wu, et.al., Google, arXiv preprint, 1609.08144
- Subwords like Sennrich et.al. (BPE)
- 8 layers deep LSTM model.
- Quantizised weights (see next slide)
- Downpour SGD: parallell training
- 8GPUs, one host.

QUANTIZED INFERENCE

- Training: real-valued weights
- Limit precision: improved inference speed
- Weights $\in -1, 0, 1$
- Extra constraints on training: $x_t^i, c_t^i \in [-\delta, \delta]$
- Similar constraints on softmax layer.

SINGLE MODEL BLEU SCORES

Model	BLEU	Decoding time
		per sentence (s)
Word	37.90	0.2226
Character	38.01	1.0530
WPM-8K	38.27	0.1919
WPM-16K	37.60	0.1874
WPM-32K	38.95	0.1146
Mixed Word/Character	38.39	0.2774
PBMT 15	37.0	
LSTM (6 layers) 30	31.5	
LSTM (6 layers $+$ PosUnk) 30	33.1	
Deep-Att 43	37.7	
Deep-Att + PosUnk 43	39.2	

ENSEMBLE MODEL BLEU SCORES

Model	BLEU
WPM- $32K$ (8 models)	40.35
RL-refined WPM-32K (8 models)	41.16
LSTM (6 layers) 30	35.6
LSTM (6 layers $+$ PosUnk) 30	37.5
Deep-Att + PosUnk (8 models) 43	40.4

SINGLE MODEL HUMAN EVALUATION

Model	BLEU	Side-by-side
		averaged score
PBMT 15	37.0	3.87
NMT before RL	40.35	4.46
NMT after RL	41.16	4.44
Human		4.82

FUTURE OF (N)MT 1

- Larger context (not only one sentence at a time)
 - Attention for long sequences in **speech**: *Chan, Jaity, Le, Vinyals, ICASSP 2015*
 - Tracking states over many sentences in **dialogue systems**: Serban, Sordoni, Bengio, Courville, Pineau , AAAI 2015

FUTURE OF (N)MT 2

Multi-language translation models

- Multi-Task Learning for Multiple Language Translation Dong, Wu, He, Yu, Wang, ACL 2015
- Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism *Firat, Cho, Bengio, NAACL 2016*
- Improvement for low-resoursce languages
- Not yet as good for high-resource languages
- Zero-resource translation (some initial results)

Multilingual Translation: Looking Ahead

- Zero-resource translation
 - Finetuning with *pseudo*-parallel corpus [Sennrich et al., ACL2016]
 - Closely related to unsupervised learning

Pseudo-corpus Generation

Finetuning n.one/ [Firat et al., EMNLP2016]

Beyond Maximum Likelihood

- Maximize the sequence-wise global loss
- Incorporate inference into training
 - Stochastic inference
 - Policy gradient [Ranzato et al., ICLR2016; Bahdanau et al., arXiv2016]

n.one

- Minimum risk training [Shen et al., ACL2016]
- Deterministic inference
 - Learning to search [Wiseman & Rush, arXiv2016]

Time Step

mogren@chalmers.se

http://mogren.one/

APPENDIX

by ent362 ent300 updated 6:06 pm et_thu march 26_2015 (ent300) the `` ent321" series will have to handcuff a new director .ent201, who directed `` ent71," told ent286 that she wo n't be back for the sequel ... ent100 "... directing." ent135 ' has been an intense and incredible journey for which i am hugely grateful," she said in a statement to the site ... while i will not be returning to direct the sequels ... wish nothing but success to whosoever takes on the exciting challenges of films two and three "'ept71' what fans hoped for ? the first film in the best - selling book series has been hugely successful .pulling in more than \$ 550 million worldwide since it premiered in mid-february, but there have been rumbles that creative clashes were in the offing for the sequel, author ent341 has a great deal of control in how her books are presented on screen , and she made it clear that she wanted to write the screenplay for the second film .ent184 reported last month .ent28 wrote the screenplay for `` ent71 ." the story behind mr. ent289 's suits the film stars ent344 as billionaire ent275 -- a man of certain sexual proclivities -- and ent407 as his romantic partner .ent389 .

by ent339 ent42 updated 2:59 pm et_thu march 26_2015 (ent42) call it `` ent351 ," a ent396 state trooper caught a driver using a cardboard cutout of ent421, the ent364 beer pitchmanknown as `` ent397 "the driver who was by himself, was attempting to use the ent214, "" the trooper immediately recognized it was a prop and not a passenger . "trooper ent367 told the ent375 . `` as the trooper approached, the driver was actually laughing, "ent143 sent out a tweet with a photo of the cutout -- who was clad in what looked like a knit shirt . a far cry from his usual attire -- and the unnamed laughing driver : `` i do n't always violate the ent303 lane law ... but when i do .i get a \$ 124 ticket !we 'll give him an a for creativity !'' the driver was caught on ent300 near ent327 ent396 just outside ent53 "he could have picked a less recognizable face to put on his prop. "ept143 told the ept375 " we see that a lot usually it 's a sleeping bag, this was very creative ."

a driver was caught in the **X** with a cutout of `` *ent7* "

X bows out of the `` ent321" sequel

Teaching Machines to Read and Comprehend, Dec 2015 Hermann, Kocisky, Greffenstette, Espeholt, Kay, Suleyman, Blunsom

WHAT WASN'T ON THAT LIST?

- Explicit use of syntactic or semantic structures
- Explicit use of discourse structure, anaphora, etc.
- Black box component models for reordering, transliteration, etc

back

http://mogren.one/

DRAW, A Recurrent Neural Network For Image Generation - 2015 Gregor, Danihelka, Graves, Rezende, Wierstra

