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Deep Learning

* Deep artificial neural networks
* Learning from data (preferably big)

» Outperforms traditional methods in:

+ Image clasification

+ Natural language processing
* Machine translation
* Sentiment analysis

» Reinforcement learning

http://mogren.cone/
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\Why the Success?

Progress in model design and algorithms
GPUs
Interest from researchers and industry

Practical use (See previous slide)
Real applications at Google, Facebook,
Tesla, Microsoft, Apple, and others!

http://mogren.one/



Perceptron
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1957, Frank Rosenblatt
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Perceptron

inputs output

1957, Frank Rosenblatt
« Linear (binary) classification of inputs

+ Can not Learn any non-Llinear function
(e.g. exclusive or, XOR)

http://mogren.one/
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Modelling XOR
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Artificial Neural Networks
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Artificial Neural Networks
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Artificial Neural Networks

inputs hidden layer outputs
« Combining many units lets us learn
non-linear functions
 Each layer:

o Linear transformation: a = Wx + b
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Artificial Neural Networks

« Combining many units lets us learn
non-linear functions

 Each layer:

» Linear transformation: a = Wx + b

» Non-linear (element-wise) activation:

h=g(a)
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Modelling Functions
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Modelling Functions

inputs hidden layer outputs

¢ Universal function approximation
» Stacking layers: function composition

+ Train by propagating errors through
model, updating weights

details

http://mogren.one/



Representation Learning

Low-Level| |Mid-Level| [High-Level| Trainable
— — —
Feature Feature Feature Classifier

 Each layer a non-linear transformation
of inputs:
z = sigmoid(Wx + b)

Feature visualization of c i net trained on from [Zeiler & Fergus 2013]
Hubel & Weisel featural hierarchy
topographical mapping - .
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Representation Learning

Low-Level| |Mid-Level| [High-Level| Trainable
— — —
Feature Feature Feature Classifier

Each layer a non-linear transformation
of inputs:

z = sigmoid(Wx + b)

Learning representations; abstractions

Feature visualization of c i net trained on from [Zeiler & Fergus 2013]
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Representation Learning

Low-Level| |Mid-Level| [High-Level| Trainable
— — —
Feature Feature Feature Classifier

 Each layer a non-linear transformation
of inputs:
z = sigmoid(Wx + b)

* Learning representations; abstractions

a2 |n contrast to traditionaL machine Feature visualization of ional net trained on from [Zeiler & Fergus 2013]

Hubel & Weisel featural hierarchy
[ESFniNGg decp learning does NOL rely | wogaricamaog . @ _—
er-complex " ™ L
on feature engineering! 35,5 I VAN
complex cells Inld level

simple cells @%
@ low level
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Levels of Abstractions
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Convolutional Neural Networks

» Convolution filters; patches matching
parts of input

+ Successful e.g. for image recognition
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Deep Learning for Image Processing

» Deeper and deeper

 2014: Googlellet; 22 layers (illustration)
+ 2015: Residual Nets; 152 layers

+ “Surpassed” human performance in 2015

http://mogren.one/



Deep Learning for Image Processing

25.8
152 layers
16.4
L7
[ 19 layers

shallow 3.57

ILSVRC'10  ILSVRC'll  ILSVRC'I2  ILSVRC'I3 ILSVRC'l4 ILSVRC'l4  ILSVRC'15
AlexNet VGG GoogleNet ResNet

ImageNet Classification top-5 error (%)
Kainiing He, Xiangyu Zhang, Shaoqing Ren, & Jan Sun, “Deep Residual Learning for Inage Recognition” arXiv 2015 http://mogren.one/




Sequence Modelling
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Sentiment Analysis

Classification

A A A
—»[ LSTM ]-» [ LSTM ]-» [ LSTM ]
A A A

« Binary sequence classification
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(Machine Translation
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“Sequence-to-sequence” learning
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(Machine Translation
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 “Sequence-to-sequence” learning
+ Attention models

http://mogren.one/



Encoding Questions

Responding to Queries using Encoder-Decoder lNets

Joint work with Jacob Hagstedt.

» Discussion forums: much information, little structure ‘ ‘

ar
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Encoding Questions

Responding to Queries using Encoder-Decoder lNets

Joint work with Jacob Hagstedt.

» Discussion forums: much information, little structure ‘
¢ Recommending users based on their competence ‘

+ Recommending relevant threads and posts ‘

http://mogren.one/



Caption Generation

A
bird
flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generationJ

more
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Entity Recognition

Swedish Medical Domain

Joint work with Sean Pavlov & Simon Almgren

Misstanke om [herpes simplex-encefalit] foreligger vid ‘
akut insjuknande med [feber], cerebral paverkan med
[konfusion], sénkt [edvetande] och [fokala neurologiska g

=

symtom)].

ogren.one/
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Entity Recognition

Swedish Medical Domain

Joint work with Sean Pavlov & Simon Almgren

+ Medical domain text
« Writing style
 Vocabulary
« Synonymous
* Hierarchy/Hyponymy

» Character recurrent neural network
« Patient journal data

&
=
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Deep Reinforcement Learning

« Learning a policy using an infrequent reward
signal

ALi?Ysrfms;:a
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Deep Reinforcement Learning

« Learning a policy using an infrequent reward
signal

» Deep Q-Learning: Model the “action-value”
function

ALi?Ysrfms;:a
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Deep Reinforcement Learning

« Learning a policy using an infrequent reward
signal

» Deep Q-Learning: Model the “action-value”
function

* Atari games.

ALi?Ysrfms;:a
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Atari games.

Deep Reinforcement Learning

Learning a policy using an infrequent reward
signal

Deep Q-Learning: Model the “action-value”
function

Alpha Go

ALi?Ysrfms;:a
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Atari games.

Deep Reinforcement Learning

Learning a policy using an infrequent reward
signal

Deep Q-Learning: Model the “action-value”
function

Hipha Go p
Autonomous driving ALLSYSTEMSED

http://mogren.cone/
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Q-Learning Playing Atari Break-Out

Online Offline back to reinforcement Learning http://mogren.one/



https://www.youtube.com/watch?v=Q70ulPJW3Gk
https://www.youtube.com/watch?v=Q70ulPJW3Gk
atari-breakout-1.avi

Attention Visualization

Al0.98) woman(0.54), 5(0.37)
oo

A ¥

throwing(0.33), 2(0.26) frisbee(0.37) in(0.21),

, 1

2(0.18) park(0.35)

A woman is throwing a frisbee in a park.

2

back to caption introduction

http://mogren.one/



Attention Visualization

stop(0.36), 5ign(0.19)

A. st
on(

(0.21) ad(0.26),

1

With(0.28) in(0.37)

ME

background(0.11) 0.13)

r

A stop sign is on a road with a mountain in the background.

back to caption introduction
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Learning

hidden layer outputs

inputs

function application(s))

(

® Forward pass
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back to learning
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Learning

hidden layer outputs

inputs

function application(s))

(

® Compute error for output

® Forward pass

i)

)

back to learning
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Learning

@ Forward pass (function application(s))
® Compute error for output

® Compute gradients (backpropagation)
derivative of stacked layers: chain rule

back to learning

inputs
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X9
Q

XS
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hidden layer

outputs
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Learning

inputs hidden layer outputs

@ Forward pass (function application(s))
® Compute error for output

i
¢
N

® Compute gradients (backpropagation)
derivative of stacked layers: chain rule

N

SR

\J

(O

4
"’{

® Update weights (a small step)
(minibatch stochastic gradient descent)

back to learning

http://mogren.one/



Modelling Language using RNMs

v 72 ¥
4 4 A
4 4

« Language models: P(word;|word,, ..., word;_,)

back to rnn click for example
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« Language models: P(word;|word,, ..., word;_,)
» Recurrent Neural Networks

back to rnn click for example
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Modelling Language using RNMs

v 72 ¥
4 4 A
4 4

« Language models: P(word;|word,, ..., word;_,)
» Recurrent Neural Networks
 “Long Short-Term Memory” (LSTM)

back to rnn click for example
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Modelling Language using RNMs

v 72 ¥
4 4 A
4 4

« Language models: P(word;|word,, ..., word;_,)
Recurrent Neural Networks

« “Long Short-Term Memory” (LSTM)

Fixed vector representation for sequences

back to rnn click for example
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Modelling Language using RNMs

v 72 ¥
4 4 A
4 4

« Language models: P(word;|word,, ..., word;_,)
Recurrent Neural Networks

« “Long Short-Term Memory” (LSTM)

« Fixed vector representation for sequences

« Language generation (sampling; beam search)
back to rnn click for example

http://mogren.one/
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back to rnn

Christopher Olah
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Encoder-Decoder Framework

encoder

decoder

 Sequence to Sequence Learning with Neural Networks /lya Sutskever,
Oriol Vinyals, Quoc V. Le, NIPS 2014

» Neural Machine Translation (NMT)

http://mogren.one/



Encoding Questions

Responding to Queries using Encoder-Decoder lNets

Joint work with Jacob Hagstedt

* Goal: assistant in forum environments
(e.g. Slack, Stack Overflow)
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Encoding Questions

Responding to Queries using Encoder-Decoder lNets

Joint work with Jacob Hagstedt

* Goal: assistant in forum environments
(e.g. Slack, Stack Overflow)
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 Learn to suggest relevant forum users (RNN) ‘
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Encoding Questions

Responding to Queries using Encoder-Decoder lNets

Joint work with Jacob Hagstedt

* Goal: assistant in forum environments
(e.g. Slack, Stack Overflow)

+ Word embeddings to find relevant comments ‘
 Learn to suggest relevant forum users (RNN) ‘

¢ Learn to respond to questions (Encoder-Decoder) —
more

http://mogren.one/



Discussion Suggestions - \Word Embeddings
Joint work with Jacob Hagstedt

Q: | like to eat sushi for lunch

A

EY

more http://mogren.one/
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Discussion Suggestions - \Word Embeddings
Joint work with Jacob Hagstedt
Q: | like to eat sushi for lunch

A1. Or just simply good lunch sushi (0.86)

A2. | doesnt have to be a buffet, but | do tend to
leave hungry when eating at regular restaurants
:stuck _out_tongue: (0.79)

A3. hmm, | think I'd skip the hotel. Is anyone up for ‘ ‘
the cantine or kistenpfennig bakery? they have

some nice sandwiches, salads and warm meals for —
lunch.. (0.78)
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Discussion Suggestions - \Word Embeddings
Joint work with Jacob Hagstedt
Q: | like to eat sushi for lunch

A1. Or just simply good lunch sushi (0.86)

A2. | doesnt have to be a buffet, but | do tend to
leave hungry when eating at regular restaurants
:stuck _out_tongue: (0.79)

A3. hmm, | think I'd skip the hotel. Is anyone up for ‘ ‘
the cantine or kistenpfennig bakery? they have

some nice sandwiches, salads and warm meals for —
lunch.. (0.78)

A4. lunch today? | would be up for a burger
mMef@nacing: (0.78) http://mogren.one/



Q: react native is the next big thing
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back
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Q: react native is the next big thing

A1. One big thing is that sense and glikview now

will run on the same engine (0.79) \‘
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A1. One big thing is that sense and glikview now

will run on the same engine (0.79) ‘
A2. that is really big (0.77) \
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Q: react native is the next big thing

A1. One big thing is that sense and glikview now
will run on the same engine (0.79)

Az2. that is really big (0.77)

A3. I'm thinking about starting a react project just to
learn it and be prepared once native is released

:simple_smile: (0.77) ‘ ‘

back
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Q: react native is the next big thing

A1. One big thing is that sense and glikview now
will run on the same engine (0.79)

Az2. that is really big (0.77)

A3. I'm thinking about starting a react project just to
learn it and be prepared once native is released

:simple_smile: (0.77) ‘ ‘
A4. hello <channel> , my client is currently

considered whether to go for ios+android native —
apps or using react native - what would be your

recommendations? (when should react native be
considered instead of going for native ios/android
apps) (0.77)

back

http://mogren.one/



Memory Networks

« Attention refers back to internal memory; state of encoder
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Memory Networks

« Attention refers back to internal memory; state of encoder
* Neural Turing Machines

¢ (End-To-End) Memory Networks:
explicit memory mechanisms
(out of scope today)

back

http://mogren.one/



Entity Linking (EL)

[Barack Obama] is the 44th President of the [US].

& Not logged in Talk @

Article Talk Read Viewsoumﬁ

Barack Obama

From Wikipedia, the free encyclopi
(Redirected from Barack cbama)

"Barack" and "Obama" redif
Barack Obama, Sr. For otherl

@ Recognise entity mentions

back to rnn

7 o @ \
T g 9
HEPEET 1
oy
WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Featured content

Article Talk

United States

From Wikipedia, the free encyclopedia

"United States of America", "Ame
South America, see the America:
(disambiguation) and United Stat
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Entity Linking (EL)

[Barack Obama] is the 44th President of the [US].

& Not logged in Talk @

Article Talk Read Viewsourcg

Barack Obama

From Wikipedia, the free encyclopi
(Redirected from Barack cbama)

"Barack" and "Obama" redif
Barack Obama, Sr. For otherl

@ Recognise entity mentions

“;!fJ" &
s W \
5 Q i
L1 W /
S sl
D
WIKIPEDIA
The Free Encyclopedia
Main page
Contents

Featured content

® Link each mention to database

back to rnn

Article Talk

United States

From Wikipedia, the free encyclopedia

"United States of America", "Ame
South America, see the America:
(disambiguation) and United Stat

http://mogren.one/



EL, Work in Progress

 Deep Char BI-LSTM

back to rnn
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EL, Work in Progress

 Deep Char BI-LSTM
« One softmax per term (Kageback et.al.)

back to rnn
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EL, Work in Progress

+ Deep Char BI-LSTM
« One softmax per term (Kageback et.al.)
« Train on Wikipedia links

back to rnn

http://mogren.one/



Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

back to rnn
http://mogren.one/



Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?

back to rnn
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Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?

 Character vocabulary is small

back to rnn
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Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?
 Character vocabulary is small

* Learns to write like Shakespeare

back to rnn
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Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?

 Character vocabulary is small

* Learns to write like Shakespeare
¢ Or like linux programmers

back to rnn
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Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?

 Character vocabulary is small

* Learns to write like Shakespeare

Or like linux programmers
» Mostly correct, (brackets are opened and closed, indentation looks good)

back to rnn
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Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?

 Character vocabulary is small

* Learns to write like Shakespeare
Or like linux programmers
» Mostly correct, (brackets are opened and closed, indentation looks good)

Or like Wikipedia markup

back to rnn
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Char-RMNNs

¢ One LSTM module per character

(Karpathy et.al. 2014)

« Word vocabulary independence (Learn OOV terms)
- Malware classification?

 Character vocabulary is small

* Learns to write like Shakespeare

Or like linux programmers
» Mostly correct, (brackets are opened and closed, indentation looks good)

Or like Wikipedia markup
+ Or the text-files on my harddrive

back to rnn
B  rE http://mogren.one/
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el Vil has | neighbors.

Graph has 2 vertard. Number on coykut: 2583Moher.
Number }411185n169V71}305911 sdmgap Kart:

CL Volvo Penta Volvo Penta in you hax on Volvo
TrucladionTenkoy i meance can 06:7159g333139 >-C vexter:
unbe Bactizaces processed deviewroced an than quardy
processed before: 150

erreight rasunce qual. Number stam ald Boat.
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Bl gt Ron !
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b9 Nlkhwvear has 1 neighbors.

Graph has 6 neighbors.

Graph has 9 vertices and 699 edges.

faist on ecntroceds basbanam has no soluth.' Number @t
centroids proclesc. Number of centroids processed
before: 235

rearnt has 1 neighbors.

Graph has 4 vertices and 7 edges.

s instance has no solution!

Decided on centroid: aent. Nerticed least has no soam
Foel sEro sl Number 0fill Foo small (isize s lisnegalpli

Number of centroids processed resuase Tas instance
cast. Number of centroids processed before: 342 daser
ha

http://mogren.one/
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