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Abstract. Fires are a major hazard resulting in high monetary costs, personal suffer-

ing, and irreplaceable losses. The consequences of a fire can be mitigated by early
detection systems which increase the potential for successful intervention. The num-
ber of false alarms in current systems can for some applications be very high, but

could be reduced by increasing the reliability of the detection system by using com-
plementary signals from multiple sensors. The current study investigates the novel use
of machine learning for fire event detection based on acoustic sensor measurements.

Many materials exposed to heat give rise to acoustic emissions during heating, pyrol-
ysis and burning phases. Further, sound is generated by the heat flow associated with
the flame itself. The acoustic data collected in this study is used to define an acoustic
sound event detection task, and the proposed machine learning method is trained to

detect the presence of a fire event based on the emitted acoustic signal. The method is
able to detect the presence of fire events from the examined material types with an
overall F-score of 98.4%. The method has been developed using laboratory scale

tests as a proof of concept and needs further development using realistic scenarios in
the future.

Keywords: Fire detection, Artificial intelligence, Machine learning, Deep neural networks, Acoustic

emissions, Sound

1. Introduction

Fires are a major hazard, generating direct costs for our society in the order of
approximately 1-2% of the GDP in many developed countries [1]. In addition to
the direct monetary cost of fires there are additional consequences in terms of per-
sonal suffering, property and environmental loss, and loss of vital societal func-
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tions for short or long periods of time. One way to mitigate the consequences of
unwanted fires is to ensure their detection at an early stage, thereby increasing the
potential for successful intervention.

Fire detection systems are common in most industrial facilities, assembly pre-
mises, hotels and health care facilities. A recent study, however, indicated that the
number of false alarms on automatic alarm systems in Germany could be as high
as 87% [2]. Similar data from Sweden indicates that false alarms could actually be
as high as 97% in certain applications [3, p. 81]. Independent of the actual size of
the problem, false alarms are a serious problem for the owner of a facility, for
people in the building and for the fire and rescue services called to the building to
respond to the fire. A false fire alarm creates unnecessary interruptions to business
operations, forces people to evacuate and introduces a high unnecessary traffic
risk. The reasons for false alarms vary depending on the type of detector, its
application and position; but, reasons may include non-fire particles in a dirty
industrial environment or produced by cooking in a kitchen (whether domestic or
industrial), or steam produced in industrial or domestic situations. In essence,
there are two solutions to this problem, either false alarms are stopped by organi-
sational measures, i.e. a fire must be confirmed by a complementary means before
activating the detection system to initiate a response; or the reliability of the
detector is increased through a variety of technical measures. In the latter cate-
gory, some effort has been made to study multi-sensor fire detection to improve
the reliability of detection and reduce the number of false alarms [4, 5]. Such sys-
tems typically rely on a combination of traditional sensors and data treatment to
reinforce detection reliability by confirmation of detection through several fire
characteristics such as, e.g. smoke, temperature, CO-emissions and CO2-emissions
(see e.g. [6, 7]). While such efforts have been successful in improving the level of
detection compared to single sensor detectors [6]), they typically rely on a range of
chemical (e.g. species) detection methods, heat and particle detection [8].

In recent years, papers have been published concerning the use of various types
of machine learning to improve the development of algorithms to analyse these
multi-sensor signals (see e.g. [9] and references therein). However, the authors
have not been able to find recent papers that refer to the use of audio signals to
detect fires. The closest study in the literature concerns a recent article where the
authors detect the position of a fire and its characteristics using sound emitted by
the detector rather than the fire, in an effort to improve data collection as input to
tactical response to the fire [10]. In this application, Xiong et al. [10], assume that
the fire itself has been detected by other means and the sound is produced by the
alarm itself. But using acoustic signals as a way to detect fires is not addressed in
the paper.

Clearly, there is a need to improve the capability for simple detectors to per-
form with a high level of reliability and, in the long term, this needs to be solved
in a cost effective manner [11]. Two strategies can be identified in the literature to
solve the issue: improve existing detectors with respect to their sensitivity by signal
filters, or find alternative fire characteristics to detect an incipient fire [12]. The
current study aims to investigate the novel use of machine learning for fire detec-
tion based on acoustic measurements (FORMAS Contract# 2019-00954) in an
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effort to improve reliability while using simple detection methods, i.e. the focus is
on using the second method with an alternative fire characteristic being applied to
detect the fire. The advantage of using sound as the fire characteristic is that it
can rapidly reach the detector (more rapidly than smoke dispersion or convective
heat transfer through air) and it is less hindered by physical barriers such as walls.
Indeed, the concept of using acoustic measurements to detect fires was first inves-
tigated in the 1990s at the National Institute of Standards and Technology (NIST)
in the US [13], although acoustic flame characteristics have been investigated since
the 1960s [14], albeit without reference to fire detection. In a more modern appli-
cation of acoustics to combustion phenomenon, Nair [15] investigated the use of
sound to identify flame blow-off. While interesting from a combustion point of
view, his methodology has not been applied to the detection investigation pre-
sented in this article as there is no assumption of a steady flame to detect burning.

The initial work by Grosshandler and Jackson [13] provided proof-of-concept
for using acoustic detection, but was not pursued due to difficulties with signal to
noise ratio and acoustic measurement technologies which could not detect signals
for large distances at that time. In the initial study, the efficacy was limited since
the detection algorithm was based on hard-coded algorithms. Sound sources are
often characterized only by the sound power they are emitting. Sometimes, char-
acteristics of the frequency domain are also studied, with e.g. high-pass or low-
pass filters, but it may not be possible to differentiate between vastly different
sources, such as music and construction noise, with analytical or numerical meth-
ods unless the time domain is considered. When the time signal is considered,
however, typically either very simple relationships are considered, e.g. counting
the number of events over a threshold level, or complicated processes are studied
that depend on well-defined and stable conditions. One example is the Minor
Component Analysis (MCA) based method to detect signatures in the time
domain presented by Kwan et al. [16].

Recently, machine learning has made great progress for many applications, due
to algorithmic developments together with progress in computational capacity and
the availability of large datasets with labelled data. Indeed, in a review by Naser
[17], the application of machine learning and artificial intelligence in fire engineer-
ing and sciences was explored. Naser identified the use of machine learning in
enhancing fire detection in domestic applications and wildland fires, but relied on
traditional sensors or picture information. In no case that we have found has
machine learning been applied to acoustic signals. One of the most successful
approaches is deep-learning, which applies artificial neural networks (ANN) with
many layers to problem solving. To date, deep learning has been used in such
diverse applications as to achieve computer vision for self-driving cars, speech
recognition, automatic translation, and text summarization [18]. In particular, a
method called convolutional neural networks has completely redefined the state-
of-the-art for processing images, video, and audio. In the area of fire safety, sev-
eral attempts have been performed using computer vision techniques based on
deep learning for fire detection [19–21]. Deep learning models have the capacity to
discriminate complex patterns in high-dimensional data, potentially overcoming
the limitations in early approaches to sound-based fire detection mentioned above.
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This paper provides a proof-of-concept for using acoustic measurements together
with machine learning for rapid fire detection. The aim is that this proof-of-con-
cept will provide the foundation for more applied research into early fire detection
in real fire scenarios where traditional fire detectors are prone to false alarms such
as dirty industrial environments, or domestic environments with confounding
issues making detection difficult. The novelty of this article is the combination of
machine learning techniques with those of acoustic measurements of a simple fire.
The aim is to simplify the fire scenario by using a standardised fire test methodol-
ogy, i.e. the cone calorimeter (ISO 5660). This simplified application has been cho-
sen to limit the research question to whether it is possible to use machine learning
to teach a system to recognise whether there is a fire or not. Future studies will
explore such questions as, which scenarios are most relevant to acoustic fire detec-
tion and whether additional acoustic complications (e.g. additional background
noise) invalidate the method. When conducting this work, the authors were in
agreement that there is a clear need to simplify the application in this first step
and to add layers of complexity in the next step.

2. Theory

This section contains theory for acoustic emissions from fires and machine learn-
ing for sound event detection which are relevant to understand the contents of the
paper.

2.1. Sound Generation Mechanisms for Fire

Acoustic emission is an essential element of the fire detection algorithms devel-
oped in the current study. Fire detection using acoustic emission has been evalu-
ated by Grosshandler and Braun [22] (who actually measured surface vibrations)
and by Kwan et al. [16]. These initial studies have, to date, not been pursued fur-
ther, particularly due to the high risk of false alarms and the problems associated
with formulating threshold rules, based on analytical or signal process approaches
that can function in noisy environments.

Acoustic emission is defined in ISO 2007 [23] as the range of phenomena that
results in the generation of structure-borne and fluid-borne (liquid or gas) propa-
gating waves due to the rapid release of energy from localized sources within and/
or on the surface of a material. The sounds are typically either very short tran-
sient signals of a wide frequency range, or more continuous signals with narrower
frequency distribution due to e.g. leaking heated fluids. There are several types of
sound associated with different stages of fire development, from heating and igni-
tion to flaming combustion.

For flaming combustion, sound is generated by hydraulic instabilities and tur-
bulence in the flame and fire plume and is typically located in the infrasound fre-
quency range, although the resulting generated sound may be within the audible
range. Detriche and Lanore [24] investigated the pulsation characteristics of small
pool fires in 1980 and concluded that the signal was very sensitive to surrounding
conditions, making it difficult to use analytical sound characterisation for detect-
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ing a fire. It should be noted that improved sensor technology has been developed
since the 1980s, and progress in signal processing and data analysis techniques
might motivate these studies to be revisited.

Both during heating and flaming combustion, sound is typically emitted by the
fuel itself. Indeed, the sound that is generally associated with the moniker ‘‘fire
sound’’, is that generated and emitted by heated material. For solid materials, the
sounds originate from internal stress due to the physical decomposition and defor-
mation of the material during the heating, pyrolysis and burning phases. A typical
example is the crackling sound from burning a log of wood originating from
evaporation of small pockets of trapped water in the material. Liquid fuels, as
well as some thermoplastics which melt before burning (e.g. PMMA), sound can
also be emitted due to boiling of the fuel.

Fires can also induce sounds not directly linked to the combustion process. One
example is a paper recently published by Thompson et al. [25] where they use the
sound of firebrands as they impact on a steel box to both detect the location of
the flame front as well as the fire intensity at that location.

2.2. Machine Learning for Sound Event Detection

Machine learning techniques such as deep neural networks have revolutionized
many fields, including computer vision [18]. Recently, learnings from the field of
computer vision have been transferred to sound event detection. The goal of
sound event detection is computerized analysis of acoustic signals for detection of
sound events, i.e. what is heard and when does a specific event occur [26]. Deep
neural networks contain a sequence of simple transformations which are usually
trained together end-to-end, and learn a hierarchy of representations for the input
signal, in each step transforming the data into a space more suitable to solve the
end task (see Fig. 1). Similar to two-dimensional optical images, the time-fre-

learned
transform

learned
transformsound input spectrogram decision

"fire"

"no fire"

...

Figure 1. In this work, we consider machine learning models based
on deep convolutional neural networks, consisting of a series of
transformations or layers. Each layer consists of a linear
transformation (matrix-vector multiplication), and an element-wise
nonlinearity. Convolutional layers also incorporate a convolution
operation which provides spatial invariance. The input to the neural
network is a sound signal which is transformed into a Mel
spectrogram.
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quency representation of audio signals have successfully been modelled using a
version of neural networks known as convolutional neural networks [27].

Convolutional neural networks learn to detect complex patterns in a spatially
organized input. This includes the potential of spatial invariance, which allows a
vision model to detect patterns at different spatial locations, and an acoustic
model to detect patterns at different locations in the time-frequency domain. Com-
pared to other machine learning approaches (including Multi-layer Perceptrons), a
convolutional network is relatively parameter efficient, and has a larger field-of-
view. This class of models obtains state-of-the-art results in many tasks within
both vision and acoustics.

3. Experimental Methodology

This section contains a description of how the sound data from the fire experi-
ments were produced and collected, as well as a description of the experimental
setup for training and designing a deep convolutional neural network for sound
event detection.

3.1. Fire Experiments

Fire experiments were performed using the cone calorimeter [28], which is one of
the most widely used instruments for ignition tests within fire science and known
to develop repeatable and reproducible results. The method has been standardized
in ISO 5660 and ASTM E1354 (see Fig. 2) but basically, the apparatus was
applied as a radiative panel without any measurements of effluent gases, heat
release rate or weight loss. The apparatus was slightly modified, i.e. the hood was
removed to reduce the sound generated from the fan and instruments in the cone
calorimeter on the recordings.

Figure 2. The cone calorimeter setup used in the experiments.
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Typically, the experimental procedure was to heat up the cone, mount the sam-
ple in the sample holder and prepare the recording devices, i.e. the recorder and
the microphone. The next step was to initiate the recording, place the sample
holder under the pre-heated cone and open the aperture shielding the radiative
cone from the sample, thus starting the experiment. The timing started as the
aperture opened. The ignition process is inherently unsteady and, therefore, no
distinction between the different stages in the burning process (see Sect. 2) has
been made. Each experiment was terminated when the sample material stopped
burning (see Table 2). This was deemed appropriate for the current study which is
a proof-of-concept, future studies should investigate possible differences in acous-
tic signatures for different stages. Even as the purpose with the experiment was to
record sound during the preheating time, i.e. before the material ignited, the
recording continued until the material stopped burning to collect also sound dur-
ing the burning phase. A set of six materials or material combinations were cho-
sen for the initial investigation. Approximately half the tests included wood:
softwood (spruce), hardwood (oak) and chipboard, with the remaining containing
plastic: polymethylmethacylate (PMMA), polyurethane (PUR) and a PUR/fabric
combination. The choices were made to explore a range of common material and
fire performance, i.e. charing and melting, see Table 1. Cone calorimeter samples
are typically preconditioned according to ISO 5660-1 to minimize sample variabil-
ity between tests. However, in this application, variability was desirable to prevent
overfitting of the model. Therefore, the samples were not preconditioned. To
make sure that the signal detected is the fire event, and not the noise from the
cone, the isolated sounds emitted by the cone without any sample material was
also collected (see Table 2).

Table 1
Description of The Sound Data Recorded for the Fire Event Class
Detailing the Different Material Types, the Radiation Used During The
Heating Phase, the Thickness of the Material, the Number of Trials
(Whole Experiment, Including the Heating, Pyrolysis and Burning
Phases), and the Total Amount of Recorded Time for Each Material
Type

Sample (–) Radiation (kW/m2) Thickness (mm) Number of trials (–) Total recorded time (min)

Oak 35 45 3 33

Oak 30 45 1 15

Oak 35 10 4 22

Spruce 30 43 1 18

Spruce 35 43 15 178

PMMA 30 10 5 61

PMMA 35 10 1 8

PUR 35 50 1 2

PUR/fabric 35 50 1 5

Chipboard 35 10 3 19
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Even as the hood over the cone was removed, there was still some background
noise in the room, mainly emitted by the ventilation system in the lab. To reduce
the influence of noises due to the ventilation system in the machine learning
phase, the fan was arbitrarily turned on and off during some trials. Timing for
when the fan should be turned on or off was sampled randomly between 30 s and
50 s (see Table 2). Further, acoustic damping using mineral wool was mounted on
nearby rigid steel surfaces (see Fig. 2).

The sound was recorded using a Zoom H2n, with a sampling frequency of 96
kHz/24 bit, connected to an external microphone of type Earthworks Audio M23.
The microphone was placed approximately 100 mm from the sample. The distance
between the microphone and the sample was chosen short enough to be able to
detect sound from the material decomposition and at the same time with a safe
enough distance from the radiative heat source to not damage the microphone. It
is desirable to position the microphone as close to the sample as possible as the
sound pressure reduces by the square of the distance. The samples were all 100 x
100 mm. Sample material, sample thickness, incident radiation and the data col-
lected is presented in Table 1.

All recordings where a sample material and radiation is present are considered
as fire events (see Table 1), and recordings without either a sample or radiation
are considered as non-fire events (see Table 2). These acoustic data recordings
were used to train a machine learning model to distinguish between fire events
and non-fire events, which is further explained in Sect. 3.2.

3.2. Machine Learning for Acoustic Fire Detection

This section presents the way the model has been trained to distinguish between
fire and non-fire events on acoustic recordings of fires, and gives a description of
the model architecture.1

Table 2
Description of the Sound Data Recorded for the Non-fire Event Class
Detailing the Presence of Fan Noise, Radiation Noise, the Number of
Trials and the Total Recorded Time

Fan (–) Radiation (kW/m2) Number of trials (–) Total recorded time (min)

On 0 1 5

Off 0 1 5

On 35 3 17

Off 35 2 20

Varying 30 1 15

Varying 35 1 15

1 A complete description of the training setup and the model, as well as instructions on how to
reproduce the main results of this study can be found in the Git-repository: https://github.com/johnma
rtinsson/fire-event-detection-dataset/.
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3.2.1. Training Setup The acoustic recordings of fire events and non-fire events
were first split into training, validation, and test sets. The training set was used to
train the model, the validation set was used to validate the model during training,
and the test set was used to evaluate the performance of the final model. The
recordings were down-sampled to 32 kHz to reduce the computational cost and
further split into 5 s long segments without overlap. The segments were then uni-
formly and independently sampled, without replacement, into the training (70%),
validation (10%) and test (20%) set respectively. The resulting training, test and
validation all have a class imbalance and consists of 16% to 20% non-fire events
and 80% to 84% fire events.

The training data was split into batches of 16 segments each and these were
used together with a loss-function and the model to compute the gradients used to
update the model parameters. The model parameters were optimized using the
optimization method Adam [29] which is an extension of the optimization method
stochastic gradient decent. A loss function is used to guide the optimizer. Since
there are two classes, fire event and non-fire event, this was modeled as a binary
classification problem. Binary cross-entropy was the loss function used. An epoch
of training is one iteration through the whole training dataset. The model was
trained until no more improvements in the loss were observed on the validation
data during the previous 100 epochs after which the model with the lowest valida-
tion loss was chosen. The training and validation loss curves are shown in Fig. 3,
where the model has been trained for a total of 218 epochs meaning that the
model with the lowest validation loss was observed at epoch 118 which is the cho-
sen model.

Figure 3. The training and validation loss curves observed during
model training.
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3.2.2. Model The state-of-the-art convolutional neural network model introduced
by Kong et al. [30] was used to model the acoustic data. The architecture was
designed for classification of sound events, and has been shown to transfer well
between different problem domains. The architecture has 14 layers (see Table 3)
and takes as input a time-frequency representation of the audio waveform. The
time-frequency representation is a Mel spectrogram [31] which is a series of short-
time Fourier transforms on sequences of the input data followed by a Mel filter-
bank which projects them onto Mel bins. While designing a filter-bank specifically
for this task may be beneficial, the development and evaluation of this is left for
future work. In this work, the Mel filter-bank is used because of its general appli-
cability and for being the standard choice in the machine listening literature [26].

Any audio segment which is assigned a sigmoid output score of more than a
threshold s is considered as a fire event, otherwise a non-fire event. This threshold
can be adjusted, a higher threshold means that the network needs to assign a
higher score for an event to be considered as a fire event, which is a way to adjust
how sensitive the model is.
3.2.2.1. Input Representation The input to the model is a 5 s waveform with a
sample rate of 32 kHz, resulting in 160, 000 samples. A window of size 1024 is
moved over the waveform with a hop length of 320, and a short-time Fourier
transform is applied to each windowed segment of the waveform to compute the
periodogram for each windowed segment. The result is a sequence of peri-
odograms, which is called a spectrogram. The spectrogram is then processed by a
Mel filter-bank, which were chosen as a set of 64 triangular filters used to map a
decibel-scaled power spectrogram onto the Mel scale [31] (see Table 4 for a sum-
mary of the parameters).

Table 3
The 14 Layer Convolutional Neural Network Architecture, Consisting
of 12 Convolutional Layers with a Kernel Size of 3 � 3 and Dierent
Feature Map Sizes According to the Table

Model architecture CNN14

Input Log-mel spectrogram, 64 Mel bins

Layers (3 9 3 @ 64, BN, ReLU) x 2

(3 9 3 @ 128, BN, ReLU) x 2

(3 9 3 @ 256, BN, ReLU) x 2

(3 9 3 @ 512, BN, ReLU) x 2

Average pooling 2 x 2

(3 9 3 @ 1024, BN, ReLU) x 2

Average pooling 2 x 2

(3 9 3 @ 2048, BN, ReLU) x 2

Global average pooling

FC 2048, ReLU

Output FC 1, Sigmoid

All followed by a batch normalization layer and a rectified linear unit (ReLU) activation function. The last two

layers are fully-connected layers of size 2048 and 1 with a ReLU activation and a sigmoid activation respectively
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3.2.2.2. Model Layers The Mel spectrogram passes through the convolutional
neural network which consists of several different layers (see Table 3). In the
table ‘‘(3 9 3 @ 64, BN, ReLU) x 2’’ denotes a convolutional block, which con-
sists of a convolutional layer with a kernel of size 3 9 3 wich outputs 64 feature
maps (3 9 3 @ 64), followed by a batch normalization layer (BN) and a rectified
linear unit (ReLU), applied twice (92) in that order. Standard average pooling
layers are used to reduce the dimensions of the representation, and finally a global
average pooling layer is used to take an average over the time-dimension before
applying two fully-connected (FC) neural network layers to the final representa-
tion of the input. During the training phase a dropout layer with a dropout frac-
tion of 0.2 is applied after each convolutional block.

Dropout [32] is used to prevent over-fitting during training, which is when the
model learns the training data too well, and starts performing worse on validation
and test data. Batch normalization [33] is used to reduce internal covariate shift,
and is a way to stabilize the training of the neural network and to speed up con-
vergence.

The rectified linear unit (ReLU) is a non-linear activation function:

f ðxÞ ¼ maxðx; 0Þ; ð1Þ

which has become a standard activation function in the deep learning literature.
Compared to e.g. the sigmoid function, the ReLU function requires little compu-
tation, and it is argued to reduce the problem of vanishing gradients.

3.2.2.3. Output Representation A fire event is modeled as a 1 and a non-fire event
as a 0 using the logistic function:

f ðxÞ ¼ 1=ð1þ e�xÞ; ð2Þ

where x is the output of the last fully-connected layer in the deep convolutional
netural network.

Table 4
Parameters for the Mel Spectrogram

Window length 1024

Hop length 320

Window Hanning

Mel bins 64
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4. Results

This section contains the results from the analysis of the acoustic signals collected
from the different fires, and presents the evaluation results of the final sound event
detection model when applied to the test data.

4.1. Acoustic Recordings of Fire Events

A dataset was collected as described in Sect. 3.1. Details of the data can be seen
in Tables 1 and 2.

(a) Non-fire event. (b) Spruce fire event.

(c) Oak fire event. (d) PMMA fire event.

(e) PUR fire event. (f) Chipboard fire event.

Figure 4. Mel spectrogram visualization of the waveform collected
from each different material type.
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Figure 4 shows an example Mel spectrogram for a 5 s segment for each mate-
rial type. These are arbitrary examples which have been chosen to provide a visual
understanding of the difference between the sound events that occur for the differ-
ent materials. For the human observer it is easy to distinguish PMMA fire event
from a non-fire event, however, for the other materials, the distinction is not as
clear. There are clear transient sounds in the recordings from all materials, and,
by manual inspection of many of these Mel spectrograms, these transient sounds
are the least visually prominent for the recordings of oak fire events.

4.2. Fire Event Detection Using a Convolutional Neural Network

This section presents the results from the analysis of using a deep convolutional
neural network for acoustic fire event detection. All results are presented for two
different values of s (see Sect. 3.2) where s ¼ 0:5 is the default choice, and s ¼
0:97 is chosen such that the number of false positives using the validation data is
zero. The effect of s can be seen in Fig. 5.

The main results which demonstrate the effectiveness of the method on the col-
lected data are presented in Table 5. The model achieves a 97.1% accuracy on the
test set for the default value of s and a precision, recall and F-score all equal to
98.4%, which means that there are equally many false positives as false negatives,
in this case 14 of each. Choosing s ¼ 0:97 means that the model becomes less sen-
sitive towards detecting false positive fire events at the cost of becoming more sen-
sitive towards detecting false negative events. That is, trading precision for recall.
The overall performance of the model decreases, but maintains a high accuracy
and F-score.

The fire event class consists of recordings of fire events from five different mate-
rial types: spruce, oak, PMMA, PUR and chipboard, and the non-fire event class
consists of recordings when there is no material present, i.e. the material type
‘‘none’’. A further analysis of the model performance on each different material

(a) τ = 0.5 (b) τ = 0.97

Figure 5. The normalized confusion matrix for s = 0.5 (a) and
s = 0.97 (b).
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type is shown in Table 6. The effect of s is apparent in this table which shows that
the less sensitive model achieves a higher accuracy on the non-fire events at the
cost of achieving a lower accuracy for in particular the oak material, but also
slightly lower for spruce and PMMA.

In Fig. 5 the accuracy of the model on fire events (lower right) and non-fire
events (upper left) is presented, as well as the false positive (upper right) and false
negative (lower left) rate, for different values of s.

5. Discussion

The current study presents a setup and method for data collection of acoustic sig-
nals from fire events. The collected acoustic signals are used to define a classifica-
tion task for fire event detection. A convolutional neural network is used to model
the acoustic signal and to detect the fire event. These fire events are shown to be
detectable with an accuracy of 97.3%, a precision of 98.4%, a recall of 98.4%,
and an F-score of 98.4% when the threshold s is set to 0.5. That is, the fire
events, as defined in this study, are shown to be detectable from the acoustic sig-
nal using a convolutional neural network.

Table 5
The Accuracy, Precision, Recall and F-score for the CNN14 Model on
the Test Set with Two Different Threshold Values

Metric s ¼ 0:5 (%) s ¼ 0:97 (%)

Accuracy 97.3 95.1

Precision 98.4 99.6

Recall 98.4 94.5

F-score 98.4 97.0

A fire event is considered as the positive class, and a non-fire event is considered as the negative class

Table 6
Model Accuracy for Each Respective Material in the Test Set, with
s = 0.5 and s = 0.97

Material Accuracy (s ¼ 0:5) (%) Accuracy (s = 0.97) (%)

None 91.6 98.2

Spruce 99.8 98.1

Oak 92.9 78.2

PMMA 99.4 98.9

PUR 100 100

Chipboard 100 100
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Note that the class imbalance in this dataset does not reflect what is expected in
most real settings where non-fire events would be expected to greatly outnumber
fire events. The presented accuracy of the model should therefore be read with
that in mind. The F-score and ROC curve are presented as a complement which
are suitable metrics for imbalanced datasets (Fig. 6).

The accuracy of the fire event detector varies depending on the material being
exposed to the heating condition. The materials that give rise to a very distinct
acoustic signal, such as PMMA, are detectable with very high accuracy, and the
materials that give rise to a less distinct acoustic signal, such as oak, are harder to
detect. Of the wood samples tested, spruce is detected with the highest accuracy
and it can be hypothesised that this is due to the more pronounced crackling
sound associated with spruce compared to oak. However, the sound produced by
the flame and fire plume during the combustion phase could also have an effect.
Also, the external conditions like initial temperature and moisture content may
also have an influence on the acoustic characteristics, especially for wooden based
samples. The sensitivity of the model to variations in temperature and moisture
was somewhat decreased by using non-preconditioned samples, and thus a vari-
ability in this respect in the training set. However, the ability of the method to be
generalized to other materials and conditions than those present in this study is
not known, and to take this work from a proof of concept stage to a realistic
task, more materials and fire scenarios are needed in the data set.

It should also be noted that the heating conditions used in this study are not
necessarily representative of how most actual fire starts, but were chosen as a way
to isolate the acoustic fire event signal of interest from other potential acoustic
signals to demonstrate that it is feasible to use acoustic measurements for fire
detection. The potential influence of heating conditions is not known at this time
although efforts were made to compensate for sounds emitted from the heating
cone. A benefit of the chosen experimental setup is that it is well known in the fire
community and known to deliver results that are repeatable and reproducible.

Figure 6. The effect of different threshold values on the true positive
and false positive rate.
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The strength of a data driven method is that it can be adapted to a new envi-
ronment, either by training the model using data collected from such an environ-
ment, or using data which has been augmented to resemble such an environment.
A limitation in the data collection setup in this study is that there was not much
variance in the acoustic environment. In a real setting there may be other noise
sources present such as talking humans and driving vehicles, and the impulse-re-
sponse of the acoustic room may also vary depending on e.g. the size of the room
and the material of the walls.

To make the model more robust against varying acoustic environments the
training and test data need to capture this variance. A way to mitigate the need
for such costly data collection efforts is to augment the already existing data with
other noise sources by simply mixing multiple acoustic signals together. To emu-
late different acoustic rooms the impulse-response of such environments could also
be taken into account when mixing the signals.

The distance between the fire and the microphone will have an effect on the
performance of the system. In this study, we collected data where the sound
source was 100 mm from the microphone (see Sect. 3.1). A number of sources of
noise is present in this data; most notably ventilation and electrical interference.
At a greater distance, the increased signal-to-noise ratio will make fire prediction
harder but we hypothesize that the solution will have potential if the training data
is extended to cover this variance through further collection or data augmenta-
tion. We leave it to future work to study this effect in detail.

Another promising way of reducing the need for extensive data collection is
transfer learning. The neural network architecture used in this study has been
developed and shown to transfer well between different acoustic tasks, and pre-
training the network on similar acoustic data is an interesting way forward.
Transfer learning and data augmentation could therefore be two important ways
forward to take this a proof of concept to a method applicable in a more realistic
setting.

The data collected in this study, together with the annotations, have been made
publicly available to facilitate further research on fire event detection using acous-
tic signals. Instructions on how to download the data can be found in the supple-
mentary material.

Interesting future work would be to treat this as a regression problem and, e.g.,
study if it is possible to predict more detailed characteristics of the flame such as
flame size or heat release rate from the acoustic signal during the kindling phase,
or the time until and after the kindling phase.

6. Conclusions

This study investigates the use of acoustic sensors for early fire detection. Micro-
phones are a relatively inexpensive form of sensor, and using the acoustics from a
fire event as a complementary signal in current fire event detection methods can
make them more robust and reliable. The results presented shows that the acous-
tic signal from a fire event can be used to detect fires in the setting proposed in
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this study. The acoustic vibrations of the materials exposed to heat are used to
train a machine learning method to detect such vibrations. The results show that
the machine learning method can detect fire events from measurements of the
acoustic signals being emitted from the materials when heated. The analysis sug-
gests that performance of the convolutional neural network varies depending on
the material which is being exposed to the heating condition.

The proposed method provides proof-of-concept only and further research is
needed to investigate, e.g. the impact of different acoustic environments and differ-
ent materials on the predictive qualities of the method. Transfer learning, domain
adaptation, and data augmentation are suggested as potential methods for further
investigation.

7. Supplementary information

All the raw data used in this study can be found at the following Git-repository: h
ttps://github.com/johnmartinsson/fire-event-detection-dataset. The repository con-
tains instructions on how to download and pre-process the data, and how to train
and evaluate the machine learning model presented in this study on the data.
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