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ABSTRACT

In this report we present our method for the DCASE 2022 chal-
lenge on few-shot bioacoustic event detection. We use an ensemble
of prototypical neural networks with adaptive embedding functions
and show that both ensemble and adaptive embedding functions can
be used to improve results from an average F-score of 41.3% to an
average F-score of 60.0% on the validation dataset.

Index Terms— Machine listening, bioacoustics, few-shot
learning, ensemble

1. INTRODUCTION

In few-shot bioacoustic event detection, the task is to predict the
start time and the end time of certain bioacoustic events in a set
of sound recordings from natural environments. The few-shot test
set contains recordings for which only the first five examples of the
bioacoustic event class of interest has been annotated, hence few-
shot, and the goal is to detect the remaining events of this class in
the rest of the recording. In figure 1 we show the setup of the task
for one of the task recordings with predictions from our method.
We are also given a base training set with annotated bioacoustic
events of classes which are disjoint from the classes in the few-
shot test set. During development, the few-shot test set is emulated
using a supplied few-shot validation set where all events have been
annotated as well, but where only the first five are used to infer the
remaining events.

The need for solutions to this problem is motivated by the in-
creasing amounts of audio data which are being recorded through
acoustic monitoring devices, and where automated analysis is nec-
essary to go through all of the collected data. Annotation efficient
methods which can learn from very little annotated data is promis-
ing way forward.

The key contributions in this work are as follows:

• we train an embedding function to solve a multi-class sound
event detection task since two different sound events can occur
(partially) at the same time,

• we adapt the embedding function to the bioacoustic events we
want to detect at inference time using the few-shot examples,
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• we use ensemble predictions from multiple models trained on
different time-frequency transforms to reduce false-positives,
and

• we perform a comparison of three different time-frequency
transformations.

2. METHOD

In this section we present our method, which is an ensemble of pro-
totypical neural networks [1] with adaptive embedding functions.
We describe how each embedding function is trained, how these
are adapted using the few-shot examples, and how they are used to
produce an ensemble prediction at test time.

2.1. Training embedding function

The base training data consists of sound recordings with annotations
for 47 known event classes and one “unknown” event class. We are
given the start and end times A = {(ski , eki )}Ni=1 of these classes,
where (ski , e

k
i ) denotes the start and end time of sound event class

k for annotation i. We model the 47 known sound event classes and
the “unknown” sound event class in the same way, which yields a
total of K = 48 classes. The goal is to learn an embedding function
from this base training data. There is overlap in the annotations, i.e.
two different sound events can occur (partially) at the same time,
and we therefore treat this as a multi-class problem.

We assume a fixed length audio segment x ∈ RT that con-
sists of T consecutive audio samples is fed to the embedding func-
tion fT

θ : RT → RM (see section 2.4 for further details), where
M ≪ T . We split the audio recordings into audio segments
xi ∈ RT by sliding a window of size T with a hop size of T/2
over each recording. For each audio segment xi, a target vector
yi ∈ {0, 1}K×n is derived. If n = T it means that the target
contains one label per audio sample. Choosing n < T means that
the temporal resolution for the target is reduced. This results in a
dataset D = {(xi, yi)}Ni=1 which defines the sound event detection
task used to train the embedding function.

A prediction of the target classes for a given audio segment xi is
derived by ŷi = hϕ(f

T
θ (xi)), where hϕ(·) is a linear layer followed

by an element-wise sigmoid activation function, and fT
θ (·) is a con-

volutional neural network where the first layer is a (non-learnable)
time-frequency transform.
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Figure 1: A log Mel spectrogram of part of a sound recording (top) and examples of predictions (bottom) from an ensemble prototypical
network (solid blue line) and a prototypical network (dashed blue line) as well as the given few-shot examples (purple line) and remaining
ground truth events (green line). The decision threshold τ of 0.5 (red line).

The loss function is the mean element-wise binary cross-
entropy between the target yi and the prediction ŷi, where the mean
is taken over the class dimension K and the temporal dimension n.

For a fixed T , we train a set of C different embedding func-
tions, all together parametrized as Θ = {θ1, . . . , θC}, by varying
the randomly initialized weights of the neural network, the training
and validation split of the base training data, and the time-frequency
transform in the first layer of the embedding function.

2.2. Prototypical network at test time

At test time we are given a sound recording and the M = 5 first ex-
amples of the class of interest. We denote these Ap = {(si, ei)}Mi=1

and call them the positive sound events. We assume that the gaps
between these annotations are background noise and let An =
{(ei, si+1)}M−1

i=1 denote the start and end time of the M − 1 first
negative sound events. This is not necessarily true since an anno-
tator may miss events, but we assume the likelihood of this to be
low.

Let li = ei − si be the length of annotation i. If li < T we
“expand” the annotation with the (T − li)/2 preceding and subse-
quent audio samples to get an audio segment of length T and then
we split this into segments of length T by sliding a window of size
T over the signal with a hop size of T/16. Let Sp denote the set of
positive audio segments derived from these annotated start and end
times, and let Sn denote the set of negative audio segments. We use
the embedding function fT

θ and define the prototypes as

ck =
1

|Sk|
∑
x∈Sk

fT
θ (x) (1)

and derive a pseudo-probability of audio segment x belonging to
sound class k from the prototypical network by

pθ(y = k|x) = exp(−d(fT
θ (x), ck))∑

k′ exp(−d(fT
θ (x), ck′))

, (2)

where k ∈ {n, p} and d(zi, zj) denotes the Euclidean distance be-
tweem zi and zj .

The query set Sq is derived by sliding a window of size T over
the signal with a hop size of T/2. The reason for setting the hop size
relative to T is that this means that we do equally many predictions
for each audio sample in the validation recordings.

2.3. Our contributions

We now present the two main contributions of this paper: i)
adapting the embedding function, and ii) using an ensemble of
predictions.

Adapting the embedding function. We use the annotated
positive events Ap = {(si, ei)}Mi=1 and compute the set of event
lengths L = {ei−si}Mi=1. We choose T ∈ {T1, 2

1T1, 2
2T1, 2

3T1}
such that

√
(T − lmin/2)2 is minimized, where lmin is the shortest

event length in L.
We choose T1 = 2048 which is 0.09 seconds at a sampling

rate of 22050 Hz so that we can plausibly detect the shortest events
in the few-shot validation set. We limit the amount of memory
needed during training and inference by only doubling up to three
times. We have not extensively evaluated the effect of these choices
and adding embedding functions trained on even shorter and longer
segments may be beneficial, but of course comes at a computational
cost during training.

Ensemble. Let Θ = {θi}Ci=1 denote the set of parameters of
C different adaptive prototypical network models. Then we define

pΘ(y = k|x) = 1

C

∑
θ∈Θ

pθ(y = k|x) (3)

as in [2], which can be viewed as a uniformly-weighted mixture of
experts. We say that x belongs to the positive event class if pΘ(y =
p|x) > τ and the negative otherwise. This is done for every x ∈ Sq .
Finally, if the query is classified as positive event then the start and
end time associated with that query is used as the predicted positive
event timings.



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

2.4. Details of the embedding function

The embedding function consists of a time-frequency transform
followed by a convolutional neural network, both of which are
briefly described below.

Time-frequency transform. The first layer of the embed-
ding function is a time-frequency transform. Let E(t, f) denote a
Mel spectrogram with 128 Mel bins derived from an audio segment
x. Then

S(t, f) = 10 log10
E(t, f)

Emax
, (4)

and

PCEN(t, f) =

(
E(t, f)

(ϵ+ (Et ∗ ϕT )(t, f))α
+ δ

)r

− δr. (5)

We either use S(t, f) as the first layer embedding function, or we
use one of two different parameter configurations for per-channel
energy normalization (PCEN) [3], one of which is developed for
speech audio and one of which is developed for bioacoustics as
suggested in [4].

Convolutional neural network. The convolutional neural
network used is an adapted version of the 10-layer residual neural
network [5] implementation used in the baseline model for the
challenge. Specifically, we i) add the classification head hϕ(·) so
that we can model the defined multi-class task, ii) use the same
number of filters in every convolutional layer, and iii) reduce the
max pooling along the time-dimension when audio segments are
too short.

2.5. Post-processing

Since we get one prediction x ∈ Sq of size T for each query audio
segment, this limits how long predictions we can make with the
model. To solve this, we simply merge all overlapping predicted
positive events into one detected event with a single start and end
time.

A predicted positive event will only be considered to be a
match with a true positive event during evaluation if they have
an intersection-over-union (IoU) of at least 0.3. We therefore re-
move predictions which are shorter than 0.3 ∗ lavg or longer than
(1/0.3) ∗ lavg, where lavg is the average event length of the given
five annotations. Since predictions of these lengths can on average
not be matched with true events as the evaluation is defined.

3. DATA

To highlight the types of variation that the model needs to handle,
we have used the few-shot examples to compute the mean event
length, the mean gap length, and the density of these sound events –
see table 1. The mean event length is defined as the mean length of
the five annotated events; the mean gap length is defined as the mean
length of the unannotated gaps between the five annotated events;
and the density is the sum of the time of the five annotated events
divided by the total time spanned by the start of the first annotated
event and the end of the last annotated event.

The validation set consists of three different subsets: HB, ME,
and PB. We present the statistics for each subset in table 1. The HB
subset contains long events with low noise, where the events are
longer than the gaps between them, and as a result has a very high

Subset Mean event length Mean gap length Mean density

HB 11.25± 3.11 6.12± 5.39 0.73± 0.12
ME 0.22± 0.03 1.40± 0.04 0.17± 0.02
PB 0.12± 0.08 59.89± 55.55 0.01± 0.02

Table 1: Validation data statistics.
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Figure 2: Comparing an ensemble of five predictions using em-
bedding functions trained on PCEN (biodiversity) time-frequency
transformations of the audio segments with each of these predic-
tions itself.

event density. The ME subset contains short events with low noise,
where the events are shorter than the gaps between them, and as a
result has a low event density. The PB subset contains very short
events with very high noise, where the events are much shorter than
the gaps between them, and has a result a very low event density.

4. EXPERIMENTS AND RESULTS

We have trained each embedding function using the Adam [6] op-
timizer with a learning rate of 1e − 3. The network is trained on a
random split with 80% training data and validated on the remaining
20%. The training proceeds until we have observed no reduction in
validation loss for the last 10 epochs and the model with the lowest
validation loss is chosen as the final model. The temporal span of
the targets have been fixed to n = 16, meaning that we have 16
targets for any given audio segment.

In figure 2 we compare the F-measure achieved on the few-
shot validation set when using an ensemble of five predictions with
using each of these predictions by themselves. The achieved F-
measure by the ensemble is better than the best of these individual
predictions for 0.4 ≤ τ ≤ 0.6, and outperforms or matches the
mean of them for other τ . We also note that the optimal τ is around
0.7 for the single predictions, and moves to 0.6 for the ensemble.

In figure 3 we compare the F-measure achieved on the few-
shot validation set for an ensemble over five predictions for
each time-frequency transform with using an ensemble over both
time-frequency transforms and the five predictions for each time-
frequency transform (an ensemble over 15 predictions). We do
not observe a significant increase in F-measure when comparing
the ensemble to the ensembles using the PCEN (bioacoustic) time-
frequency transforms, but it outperform the one using the PCEN
(speech) and log Mel transform. The optimal threshold τ varies
around 0.6 to 0.7 for the ensembles using a single transform, and is
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at 0.6 for the ensemble.
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Figure 3: Comparing ensembles using embedding
functions trained and tested on log Mel, PCEN (bioa-
coustics), or PCEN (speech), with an ensemble pre-
diction of using all these time-freuency transforms.
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Figure 4: Comparing the adaptive embedding function
with using each of the fixed size embedding functions
respectively. sr denotes the sample rate, and T de-
notes the length of the audio segment.

In figure 4 we compare the F-measure achieved on the few-shot
validation set when using the adaptive embedding functions in the
ensemble with using any of the fixed T ∈ {T1, 2

1T1, 2
2T1, 2

3T1}.
Adapting the embedding function increases performance from
53.0% (using best T = 4096) to 60.0% F-score for τ = 0.6.

In table 2 we show an ablation where performance of a proto-
typical network using a embedding function (no ensemble) which
has been trained on PCEN (speech) and a fixed segment length of
4096 is compared to using an adaptive embedding function, and
then performing an ensemble prediction over the time-frequency
transforms and random initialization of network weights and train-
ing/validation split (3 × 5). Adapting the embedding function in-
creases the F-score on average with 8.3 percentage points, and
adding the ensemble increases the F-score an additional 11.4 per-
centage points.

In table 3 we compare the results of the baselines with the F-
score on the few-shot validation set for each of the systems for
which we have submitted predictions on the test data for the chal-
lenge.

Method Ensemble Adaptive F-score [%]
Ours No No 41.3± 3.8
Ours No Yes 49.6± 5.3
Ours Yes Yes 60.0

Table 2: An ablation of our system where we add adaptive embed-
ding functions and ensemble.

Submission τ Ensemble + Adaptive F-score [%] (valid)
Baseline (TM) - No 4.28
Baseline (PN) 0.5 No 29.59
Martinsson 1 0.6 True 60.0
Martinsson 2 0.5 True 30.6
Martinsson 3 0.6 False 44.6
Martinsson 4 0.5 False 13.3

Table 3: The validation scores for the baselines provided by the
challenge organizers: template matching (TM) and prototypical net-
works (PN), and the validation score for the systems which have
been submitted for test evaluation in the challenge.

5. DISCUSSION AND CONCLUSIONS

During development of this method we observed that random sam-
pling of Sn, the set of negative examples, as in previous work does
not work well for validation files with high event densities, which is
why we chose to use the gaps between the first five annotated events
instead.

We further observed that using one single fixed audio segment
size T can be problematic. If T is much larger than the events we
want to detect, the predictions will become too long to be counted
as matches with the true events. Conversely, if T is much smaller
than the events we want to detect, it may not cover the semantics
which we want to detect. Therefore, choosing a T which matches
the lengths of the events seem to be important. The adaptation of
the embedding function could possibly be even stronger if based on
both the event length statistic and the gap length statistic.

We observed that the optimal threshold was different for dif-
ferent validation files. We therefore try to calibrate the pseudo-
probability in the predictions using an ensemble so that we get the
best results by setting τ = 0.5 as intended. We see from figure 2 and
figure 3 that the optimal threshold τ moves from around 0.7 − 0.8
to 0.6 which is what we want to achieve.

The ensemble improves performance by still correctly predict-
ing most true positives, while no longer predicting as many false
positives. This could intuitively be thought of as the ensemble being
in agreement for true positive predictions, the average of which still
yields a high pseudo-probability, while being in disagreement when
predicting false positives, the average of which would be closer to
0.5. This effect can be seen in figure 1, where some of the false pos-
itives predicted when not using an ensemble (dashed blue line) are
removed by using an ensemble of the predictions (solid blue line),
leading to a reduction in false-positives.

In conclusion, we have shown that adapting the embedding
function to the event lengths we want to detect can increase per-
formance, and that false-positives can be reduced by an ensemble
of predictions. We have also shown that out of the three time-
frequency transforms we have studied, PCEN (bioacoustics) per-
form best for this bioacoustics task, followed by PCEN (speech)
and then by log Mel.
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