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Abstract

An important reason for the success of deep neural networks this is their capability
to automatically learn representations of data in levels of abstraction, increasingly
disentangling the data as the internal transformations are applied. In this paper we
propose a novel regularization method that actively penalize covariance between
dimensions of the hidden layers in a network, driving the model towards a more
disentangled solution. This makes the network learn linearly uncorrelated represen-
tations which increases interpretability while obtaining good results on a number
of tasks, as demonstrated by our experimental evaluation. Further, the proposed
technique effectively disables superfluous dimensions, compressing the representa-
tion to the dimensionality of the underlying data. Our approach is computationally
cheap and can be applied as a regularizer to any gradient-based learning model.

1 Introduction

A good data representation should uncover underlying factors in the data while being useful for
some task. Deep networks learn representations of increasing abstraction, disentangling the causes
of variation in the underlying data (Bengio et al., 2013). Formal definitions of disentanglement are
lacking, although Ver Steeg & Galstyan (2015); Achille & Soatto (2017) both use the total correlation
as a measure of disentanglement. Inspired by this, we consider a simpler objective: a representation
disentangles the data well when its components do not correlate, and we explore the effects of
penalizing this linear dependence betweeen different dimensions in the representation.

We propose LΣ regularization, a novel regularization scheme that penalizes the correlation between
the dimensions of the learned representations. The approach is very versatile and can be applied to
any gradient-based machine learning model that learns its own distributed vector representations.
Compared to previous work on learning independent nonlinear representations our approach is
simpler, and does not impose restrictions on the model used. The approach strongly encourages the
model to find the dimensionality of the data, something that is verified by the experimental evaluation.
This can be of great utility when pruning a network, or to decide when a network needs a larger
capacity. The disabling of activations in the internal representation can be viewed as (and used
for) dimensionality reduction. The proposed approach allows for interpretability of the activations
computed in the model, such as isolating specific underlying factors. The solution is computationally
cheap, and can be applied without modification to many gradient-based machine learning models
that learns distributed representations. Moreover, we present an extensive experimental evaluation
on a range of tasks on different data modalities using different model layouts, which shows that the
proposed approach disentangles the data well; we do get uncorrelated components in the resulting
internal representations, while retaining the performance of the models on their respective task.
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2 Disentanglement by penalizing correlation

We present a novel regularizer based on the covariance of the activations in a neural network layer
over a batch of examples. The aim of the regularizer is to penalize the covariance between dimensions
in the layer to decrease linear correlation.

Definition The covariance regularization term (LΣ) for a layer, henceforth referred to as the coding
layer, is computed as LΣ = 1

p2 ||C||1 where p is the dimensionality of the coding layer, ||C||1 =∑N
i,j=1 |Cij | is the element wise L1 matrix norm of C, and C ∈ Rp×p is the sample covariance of the

activations in the coding layer over N examples C = 1
N−1

∑N
i=1(H− 1N h̄)T (H− 1N h̄).Further,

H = [h1; ...;hN ] is a matrix of all activations in the batch, 1N is an N -dimensional column vector
of ones, and h̄ is the mean activation.

Usage As LΣ has the structure of a regularizer, it can be applied to most gradient based models
without changing the underlying architecture. In particular, LΣ is simply computed based on select
layers and added to the error function, e.g. Loss = Error + λLΣ

3 Experiments

This section describes the experimental evaluation of LΣ regularization in different settings.

3.1 Evaluation metrics

Mean Absolute Pearson Correlation (MAPC) Pearson correlation report the normalized linear
correlation between variables ∈ [−1, 1]. MAPC is the average absolute value of the correlation
between all dimensionss, i.e. MAPC = (2/(p2 − p))

∑p
i<j |Cij |/

√
Cii

√
Cjj

Covariance/Variance Ratio (CVR) Mean absolute Pearson correlation becomes ill defined when
the variance of one (or both) of the variables approaches zero. We define a related measure where
all variances are summed for each dimension. More precise, the score is computed as: CVR =
1
p2

||C||1
tr(C)where ||C||1 is defined as in Sec 2. The intuition behind CVR is simply to measure the

fraction of all information that is captured in a linear uncorrelated fashion within the coding layer.
Top d-dimension Variance/total variance (TdV) TdV measure to what degree the total variance is
captured inside the variance of the top d dimensions.
90% Utilized Dimensions (UD90%) The number of dimensions that needs to be kept to retain 90%
of the total variance.

3.2 Dimensionality reduction

The purpose of this experiment is to investigate if it is possible to disentangle independent data that
has been projected to a higher dimension using a random projection, i.e. we would like to find the
principal components of the original data.

The model we employ in this experiment is an auto encoder consisting of a linear p = 10 dimen-
sional coding layer and a linear outputlayer. The model is trained using the proposed covariance
regularization LΣ on the coding layer. The data is generated by sampling a d = 4 dimensional
vector of independent features z ∼ N(0,Σ), where Σ ∈ Rd×d is constrained to be non-degenerate
and diagonal. However, before the data is fed to the autoencoder it is pushed through a random
linear transformation x = Ωz. The goal of the model is to reconstruct properties of z in the coding
layer while only having access to x. The model is trained on 10000 iid random samples for 10000
epochs. 9 experiments were performed with different values for the regularization constant λ. The
first point on each curve (in Fig 1 and 2) is λ = 0, i.e. no regularization, followed by 8 points
logarithmically spaced between 0.001 and 1. Each experiment is repeated 10 times using a different
random projection Ω and the average is reported.

The result of the experiment is reported using all four metrics defined in Sec 3.1. The result in terms
of MAPC and CVR is reported in Fig 1. The first thing to notice is that LΣ consistently lead to
lower correlation while incurring less MSE penalty compared to L1. Further, looking at the MAPC
it is interesting to notice that it is optimal for a very small values of LΣ. This is because higher
amounts of LΣ leads to lowering of the dimensionality of the data, see Fig 2, which in turn yields
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Figure 1: The amount of residual linear correlation after training the model with LΣ and L1 regu-
larization respectively, measured in MAPC (left) and CVR (right). The first point on each curve
corresponds to λ = 0, i.e. no regularization, followed by 8 points logarithmically spaced between
0.001 and 1. All scores are averaged over 10 experiments using a different random projection (Ω).

Figure 2: The resulting dimensionality the coding layer after training the model with LΣ and L1

regularization respectively, measured in TdV (left) and UD90% (right). The first point on each curve
corresponds to λ = 0, i.e. no regularization, followed by 8 points logarithmically spaced between
0.001 and 1.All scores are averaged over 10 experiments using a different random projection (Ω).

unpredictable Pearson correlation scores between these inactivated neurons. However, this effect is
compensated for in CVR for which LΣ quickly converges towards the optimal value of one, which in
turn indicates no presence of linear correlation. Turning the attention to dimensionality reduction,
Fig 2 shows that LΣ consistently outperform L1. Further, looking closer at the TdV score, LΣ is able
to compress the data almost perfectly, i.e. TdV=1, at a very small MSE cost while L1 struggle even
when accepting a much higher MSE cost. Further, the UD90% scores again show that LΣ achieves
a higher compression at lower MSE cost. In this instance the underlying data was of 4 dimensions
which LΣ quickly achieves. At higher amounts of LΣ the dimensionality even occasionally fall to 3,
however, this is due to the threshold of 90%.

3.3 Deep network of uncorrelated features

In Sec 3.2 we showed that we can learn a minimal orthogonal representation of data that is generated
to ensure that each dimension is independent. However, in reality it is not always possible to encode
the necessary information, to solve the problem at hand, in an uncorrelated coding layer. However,
using a deep network it should be possible to learn such a nonlinear transformation that enables
uncorrelated features in higher layers. To test this in practice on a problem that has this property but
still is small enough to easily understand we turn to the XOR problem.

It is well known that the XOR problem can be solved by a neural network of one hidden layer
consisting of a minimum of two units. However, instead of providing this minimal structure we would
like the network to discover it by itself during training. Hence, the model used is intentionally over-
specified consisting of two hidden layers of four logistic units each followed by a one dimensional
logistic output layer. The model was trained on XOR examples, e.g. [1,0]=1, in a random order until
convergence with LΣ applied to both hidden layers with λ = 0.2.
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(a) Layer 1, LΣ (b) Layer 2, LΣ (c) Layer 1, baseline (d) Layer 2, baseline

Figure 3: Covariance matrices of the hidden layers when trained while applying LΣ regularization (a
and b) to solve the XOR problem. Layer one has learned to utilize unit zero and three while keeping
the rest constant, and in layer two only unit two is utilized. This learned structure is the minimal
solution to the XOR problem. The baseline model (c and d) is trained without LΣ and depicts a less
interpretable solution to XOR.
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Figure 4: Results on CIFAR-10 test set using LΣ and L1, re-
spectively. Left: CVR against MSE. Right: UD90% against
MSE. Each point in the plot: λ ∈ [0.0, 0.2, ..., 10.24].

CVR UD90% MSE

LΣ 6.56 35.18 0.0398
L1 4.03 20.59 0.0569
W/O 20.00 41.69 0.0365

Table 1: Results from the experi-
ments on CIFAR.

As can be seen in Figure 3 the model was able to learn the optimal structure of exactly 2 dimensions
in the first layer and one dimension in the second, whereas the baseline did not. Further, as expected,
the first layer do encode a negative covariance between the two active units while the second layer is
completely free from covariance. Note that, even though the second hidden layer is not the output of
the model it does encode the result in that one active neuron.

3.4 Non-linear uncorrelated convolutional features

Convolutional autoencoders have been used to learn visual features. Here, we will see that it is
possible to train a deep convolutional autoencoder on real-world data and learn representations that
have low covariance, while retaining the reconstruction quality.

To keep it simple, the encoder part of the model used two convolutional layers and two fully connected
layers, with a total of roughly 500.000 parameters in the whole model. The regularization was applied
to the coding layer which has 84 dimensions, giving a bottleneck effect. The model was trained and
evaluated on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009), containing 32x32 pixel colour
images. Official test set: 10,000 images, 5,000 images from the training set of 50,000 was set aside
for validation. We compare the results from using LΣ regularization with L1 regularization and with
no regularization at all (W/O). The model was trained using Adam (Kingma & Ba, 2015) with early
stopping. Initial learning rate: 0.001, batch size: 100, λ: 0.08. The reported scores are averages from
training the model five times with different initialization.

The results (see Table 1) show that the high-level features become more disentangled and has a
lower CVR (6.56) using LΣ regularization. Without regularization, the score is 20.00, and with
L1 regularization the score is 4.03. The model with LΣ regularization obtains an MSE of 0.0398,
roughly the same as without regularization (0.0365), both of which are much better than using L1

regularization, with an MSE of 0.0569. Figure 4 shows the CVR score vs the MSE, illustrating
that LΣ leads to more disentangled representations.As you increase the regularization factor LΣ

regularization pushes down the CVR quickly, while retaining an MSE error that is almost constant.
L1 regularization also lower CVR, although slower, and at a higher MSE cost. The UD90% results
show that LΣ encourages representations that concentrate the variation.
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4 Related work

Different notions of independence have been proposed as useful criteria to learn disentangled
representations. Principal component analysis (PCA; Pearson, 1901) can find linearly uncorrelated
variables. Nonlinear PCA often refers to neural autoencoders (Kramer, 1991) without specific
regularization. Independent component analysis (ICA; Hyvärinen et al., 2004) has a somewhat
stronger requirement of statistical independence. Dinh et al., (2015; 2017) used the substitution rule
of differentiation as a motivation for the model. Using a fixed factorial prior, they encouraged the
model to learn independent representations. Brakel & Bengio (2017) used adversarial training to
make a generative network learn a factorized, independent distribution p(z). Our approach is more
flexible and portable, as it can be applied as a regularization to learn uncorrelated components in any
gradient-based model that learns internal representations.

5 Conclusions

In this paper, we have presented LΣ regularization, a novel regularization scheme based on penalizing
the covariance between dimensions of the internal representation learned in a hierarchical model. The
proposed regularization scheme helps models learn linearly uncorrelated variables in a non-linear
space. While techniques for learning independent components follow criteria that are more strict,
our solution is flexible and portable, and can be applied to any feature-learning model that is trained
with gradient descent. Our method has no penalty on the performance on tasks evaluated in the
experiments, while it does disentangle the data. We saw that our approach performs well applied to a
standard deep convolutional autoencoder on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009); the
resulting model performs comparable to the model without regularization, while we can also see that
the covariances between dimensions in the internal representation decrease drastically.
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