Editing Simple Graphs*

Peter Damaschke and Olof Mogren
Department of Computer Science and Engineering
Chalmers University, 41296 Géteborg, Sweden

[ptr,mogren|@chalmers.se

Abstract

We study the complexity of turning a given graph, by edge editing, into a target graph
whose critical-clique graph is any fixed graph. The problem came up in practice, in an
effort of mining huge word similarity graphs for well structured word clusters. It also
adds to the rich field of graph modification problems. We show in a generic way that
several variants of this problem are in SUBEPT. As a special case, we give a tight time
bound for edge deletion to obtain a single clique and isolated vertices, and we round up
this study with NP-completeness results for a number of target graphs.

1 Introduction

Graphs in this paper are undirected and have no loops or multiple edges. In an edge mod-
ification problem, an input graph must be modified by edge insertions or deletions or both,
to get a target graph with some prescribed property. Edge editing means both insertions
and deletions. Edge insertion is also known as fill-in. The computational problem, for a
given target graph property and a given type of editsm is to use a minimum number k of
edits. There is a rich literature on the complexity of such problems for a number of target
graph properties, and also on their various applications. Here we cannot possibly survey
them all, we only refer to a few representative papers on hardness results [1, 13]. Other edit
operations related to graph minors are studied in [9], and the target graph is a single fixed
graph. Ironically, results are missing on edge modification problems for some structurally
very simple target graphs. Informally, “simple” here means that the graph becomes small
after the identification of its twin vertices (see Section 2 for technical definitions). For any
fixed graph H, our target graphs will be the graphs obtained from H by replacing vertices
with bags of true twins.

Our motivation of this type of problem is the concise description of graphs with very few
cliques (that may overlap) and some extra or missing edges. They appear, e.g., as subgraphs
in co-occurence graphs of words, and they constitute meaningful word clusters there. Within
a data mining project we examined a similarity matrix of some 26,000 words, where similarity
is defined by co-occurence in English Wikipedia. By thresholding we obtain similarity graphs
(Figure 1 shows a part of such a graph), and we consider subgraphs that have small diameter

*Original publication in Journal of Graph Algorithms and Applications 18 (2014),557-576

and only few cut edges to the rest of the graph. Words occurring in the same contexts form
nearly cliques. These are often not disjoint, as words appear in several contexts. Furthermore,
synonyms may not always co-occur (as different authors prefer different expressions), but
they co-occur with other words. Relations like this give rise to various cluster structures.
As opposed to partitioning entire graphs into overlapping clusters (as in [7]), we want to
single out simple subgraphs of the aforementioned type. Experience in our project shows
that some existing standard clustering methods generate poor word clusters which are either
too small or dragged out and not internally dense. This suggested the idea of defining the
clusters directly by the desired properties, and then to determine them by edge editing of
candidate subgraphs. Next, instead of describing the clusters naively as edge lists we can list
their vertices along with the few edited edges (to achieve cliques). Altogether this yields very
natural word clusters, and by varying the threshold we also obtain different granularities.
Applications of word clusters include sentence similarity measures for text summarization,
search query result diversification, and word sense disambiguation. Thus, we believe that the
problems are of importance, but they are also interesting as pure graph-algorithmic problems.

Overview of contributions:

For any fixed H, our edge modification problems are easily seen to be fixed-parameter
tractable (FPT) with k as the parameter. As our main result we get in Section 3 that they
even belong to the smaller class SUBEPT of problems solvable in subexponential time in the
parameter. (Not very many natural SUBEPT problems are known so far, as discussed in [8].)
Fach of our edge modification problems has a 2Vklogk time bound. The special case known
as p-CLUSTER EDITING, where H is the graph with p vertices and no edges, was recently
treated in [8], using techniques like enumeration of small cuts. Our result is more general,
and the quite different algorithm looks conceptually simpler, but at the price of a somewhat
worse time for the special case. Therefore it remains interesting to tighten the time bounds
for other specific graphs H as well.

Consequently, we then turn to the absolutely simplest graphs H: In Section 4 we study
the (NP-complete) edge deletion problem towards a single clique plus isolated vertices. We
give a refined FPT time bound where the target clique size ¢ appears explicitly. Intuitively,
2k/c? is an “edit density”. Using an evident relationship to vertex covers we achieve, for
small edit densities, essentially O*(1.2738%/¢) time. For large enough k/c we invoke a naive
algorithm instead, and the time can be bounded by 0(1.6355\/m). The base 1.2738 is
due to the best known VERTEX COVER algorithm from [4]. Moreover, the bound is tight:
We show that the base of k/c cannot beat the base in the best FPT algorithm for VERTEX
COVER.

Section 5 gives a similar FPT time bound for edge editing towards a single clique plus
isolated vertices, a problem that has recently been proved to be NP-complete. In Section 6 we
make some progress in proving NP-completeness results systematically, for many graphs H.
The results indicate that almost all our modification problems, with rather few exceptions,
might be NP-complete. But recall that, on the positive side, they are in SUBEPT.

phioem xyem"2" ol buse
breaststrok
datici

skater
prepaid |
astr omi

east

sl te
astr om wriggler uteru T 1\ grellplrw{is;
whimsei grapholog
Ilest soore
col eal “eamol T joc egari
ﬂa pant i
dlpsm%e-ama

gynesolog \mopl sp iest
. nave
baldgpdash i I S _\pme\'—‘f \
si non turndl tol n weIdal strikgout chancel
obstetr rui ot S
u
not efll i i plase
pls ®Sho top mets
dl@es \ resord releas meteoto i
ma ulln \ perilwelion peopl mifus
bI r||| \i ‘b d game 90 Ji i
fe nin o pre r
blsﬁo y iest
p sall alisum resilt hom pathl
I|esl aII ro laral
p a
catclment—inflow 2 *ﬂ aphelion “\ bu sh morigagor cal = mu lest
ract pre hom palh serifin sin, Iar

) \
encyc dla ST

hil oph| te
utomaEoneunc SQ -
chiropractor uplpad
autol atc:‘;],1
|lasoph qul
e (m}nlc

religion

/ \be .sh qua mn S'Pll SuperIdumo

Du#e:)la = BRI mo‘.usk superaonduct

biect ‘ | «\%(requir fo femin 4y st
° JECIOT 1ongitud kt dioxid exist NEtic— "AVA~
e < K 3 .
SeARON | iadia lhm%"stl verifi carbon B ol d calligraphiathod
conseienti wresti SuBsem appar— g — 51— SP
e " L X N
- stalagmit K g s
= M ettt B T [Shoern.Pra
P‘i cheler ans| /| b

tota @

wrestler regioen quart back aribd sout ourw ish

ept
I theqlo P b 3

papak
/ﬁgjf

/ v
// id
/ a

subitrop aceept
aVRIAg oot N E\Ald

inteseSP Pight e
m

phlegmat

Figure 1: This Gephi visualization shows a small part of our word similarity graph, for
some similarity threshold. Words have been stemmed prior to the calculations. One can
clearly recognize the “almost cliques” structure, and in the middle we see an example of two
overlapping cliques (the H = P5 case). Also, the clusters make sense, in that they comprise
related words. The data support our approach to define word clusters by edge-editing towards

unions of very few cliques.

2 Preliminaries

The number of vertices and edges of a graph G = (V, E) is denoted n and m, respectively. The
complement graph G of G is obtained by replacing all edges with non-edges and vice versa.
We also use standard notation for some specific graphs: K,, C,, P, is the complete graph
(clique), the chordless cycle, the chordless path, respectively, on n vertices, and Ky, n,....n,
is the complete multipartite graph with p partite sets of n; vertices (i = 1,2,...,p). The
disjoint union G + H of graphs G and H consists of a copy of G and a copy of H on disjoint
vertex sets. G — v denotes the graph G after removal of vertex v and all incident edges.
Similarly, G — X denotes the graph G after removal of a vertex set X C V and all incident
edges. The subgraph of G induced by X C V is denoted G[X].

A vertex cover of G = (V, E) is a subset of V' being incident to all edges. The VERTEX
COVER problem asks for a minimum vertex cover. The vertex covers in a graph are exactly
the complements of independent sets, hence the complements of cliques in G.

A graph class G is called hereditary if, for every graph G € G, all induced subgraphs of G
are also members of G. Any hereditary graph class G can be characterized by its forbidden
induced subgraphs: F'is a forbidden induced subgraph if ' ¢ G, but F' — v € G for every
vertex v.

The open neighborhood of a vertex v is the set N(v) of all vertices adjacent to v, and the
closed neighborhood is N[v] := N(v) U {v}. For a subset X of vertices, N[X] is the union
of all N[v], v € X. Vertices u and v are called true twins if uv is an edge and N[u] = Nv].
Vertices u and v are called false twins if uv is a non-edge and N(u) = N(v). The true twin
relation is an equivalence relation whose equivalence classes are known as the critical cliques
of the graph. (The false twin relation is an equivalence relation as well.) In the critical-clique
graph H of a graph G, every critical clique of G is represented by one vertex of H, and two
vertices of H are adjacent if and only if some edge exists (and hence all possible edges exist)
between the corresponding critical cliques of G. For brevity we refer to the critical cliques as
bags, and we say that G is a “graph H of bags”.

As stated earlier, an edge edit is an edge insertion or deletion. For every fixed graph H
we define three edge modification problems as follows:

H-BAG INSERTION / H-BAG DELETION / H-BAG EDITING

Given: an input graph G and a parameter k.

Problem: Change G by at most k edge insertions / deletions / edits, such that the critical-
clique graph of the resulting graph is H or an induced subgraph thereof.

We allow induced subgraphs of H in order to allow bags to be empty. Similarly we define
the problems H[0]-BAG DELETION and H|[0]-BAG EDITING. The difference is that the target
graph may additionally contain isolated vertices, that is, false twins with no edges attached.
Thus, not all vertices are forced into the bags. More formally:

H[0]-BAG DELETION / H[0]-BAG EDITING

Given: an input graph G and a parameter k.

Problem: Change G by at most k edge deletions / edits, such that the critical-clique graph
of the resulting graph, after removal of all isolated vertices, is H or an induced subgraph
thereof.

Problem H[0]-BAG INSERTION is not mentioned above, as it easily reduces to H-BAG
INSERTION: As only insertions are permitted, the isolated vertices in an optimal solution are
exactly the isolated vertices of G. Thus it remains to solve H-BAG INSERTION on G without
its isolated vertices.

We also consider problem variants where the bags have prescribed sizes. We sometimes
refer to all the mentioned problems collectively as bag modification problems, for any fixed H.
We say that editing an edge uwv affects its end vertices u and v. A vertex is called unaffected
if it is not affected by any edit.

Without loss of generality we can always assume that H has no true twins, because they
could be merged, which leads to the same problems with a smaller graph in the role of H. For
any fixed graph H understood from context, we use H to denote the class all graphs whose
critical-clique graph is H or an induced subgraph thereof. Similarly, we use H[0] to denote
the class of graphs consisting of all graphs from #H, but possibly with additional isolated
vertices. All these classes are hereditary, and they are our classes of target graphs. (One
could modify the problems by, e.g., allowing any target graphs with modular decompositions
of some maximum size, but in this paper we also want a fixed structure given by H.)

We assume that the reader is familiar with fixed-parameter tractability (FPT) and basic
facts, in particular with the notion of a branching vector. Otherwise we refer to [6, 15] for
general introductions. A problem with input size n and an input parameter k is in FPT if
some algorithm can solve it in f(k) - p(n) for some computable function f and some polyno-
mial p. The O*(f(k)) notation suppresses the polynomial factor p(n). The subexponential
parameterized tractable problems where f(k) = 20(k) form the subclass SUBEPT. In our
time analysis we will encounter branching vectors of a special form.

Lemma 1 The branching vector (1,r,...,r) with q entries r has a branching number bounded
by 1+ logy 7

T

, if v is large enough compared to the fixed q.

Proof. Denoting the branching number by 1 + x, we get the characteristic polynomial
+x =(14+2)" +q, thus z(1 4+ x)" = q. Trying x := —2—, the left-hand side becomes
(142 =1 +a) hus (1 +)" Trying 19827 the left-hand side b
bg%r(l + longr)TogQT 827 Asy grows, (1+ log%r) log27 tends to e > 2, thus, there is a threshold
ro such that, for r > rg, the left-hand side exceeds logTQr210g2 " =logy r > q. Clearly, the latter
inequality holds since ¢ is fixed, and we can just make ry large enough. Next, as x(1 4 x)" is
monotone in x, the true z is smaller than z := IOgTQT, for all » > rg. It follows that 1 + IOgTQT

is an upper bound on the branching number. ¢

3 Fixed-Parameter Tractability

Some of our bag modification problems (in different terminology) are known to be NP-
complete, among them cases with very simple graphs H. Specifically, for H = K7, problem
H[0]-BAG DELETION can be stated as follows. Given a graph G, delete at most k edges so
as to obtain a clique C and a set I of isolated vertices. Equivalently, delete a set I of vertices
incident to at most k edges, and delete all these incident edges, so as to retain a clique. The
problem is NP-complete due to an obvious reduction from MAXiMUM CLIQUE.

Next, for any fixed p, the p-CLUSTER EDITING problem asks to turn a graph, by editing
at most k edges, into a disjoint union of at most p cliques. p-CLUSTER INSERTION and
p-CLUSTER DELETION are similarly defined. Observe that these are the bag modification
problems for H = Kp. It is known that p-CLUSTER INSERTION is polynomial for every p, and
so is p-CLUSTER DELETION for p = 2, but it remains NP-complete for every p > 3, whereas
p-CLUSTER EDITING remains NP-complete even for every p > 2 [16].

These hardness results provoke the question of fixed-parameter tractability of bag mod-
ification problems. By a well-quasi ordering argument based on Dickson’s lemma [5] one
can show that H and H[0] have only finitely many induced subgraphs, and then the general
result from [2] implies that the bag modification problems are in FPT, for every fixed graph
H. Although the argument is neat, we omit the details, because we will prove a stronger
statement: membership in SUBEPT.

The following observation is known for CLUSTER EDITING (that is, H = K,,) due to [10];
here we show it for general H.

Proposition 2 Any bag modification problem has an optimal solution where any two true
twins of the input graph belong to the same bag (or both are isolated) in the target graph.

Proof. First we consider H-BAG EDITING. For a vertex v, an input graph, and a solution,
we define the edit degree of v to be the number of edits that affect v. Consider any solution.
For any equivalence class T of true twins, let v € T' be some vertex with minimum edit degree.
Consider any u € T\ {v}. If the solution puts v in a different bag than v, then we undo all
edits that affect u, and instead proceed as follows: We edit every edge uw, w # v, if and
only if vw is edited. We also move u to the bag of v and undo the deletion of edge uv (if it
happened). — Clearly, this yields a valid solution and does not increase the number of edits
between u and the vertices w # v. Since we do not incur an additional edit of uv either, the
new solution is no worse. Doing these changes for all u € T'\ {v}, and also for all T, we get a
solution where any true twins end up in the same bag. This proves the assertion for H-BAG
EbpITING.

For H[0]-BAG EDITING we treat the set of isolated vertices as yet another bag. Then the
same arguments apply. What is, however, not covered in the previous reasoning is the case
when v is isolated and w is in a bag of true twins. But then u and v are not adjacent, neither
before nor after the move, hence again the number of edits does not increase.

Finally, for the INSERTION and DELETION problems, again the same arguments go through
in all cases. Just replace “edit” with “insert” or “delete”. ¢

We make another simple observation.

Lemma 3 In any bag modification problem, for a fixed graph H with p vertices, the input
graph has at most 2k + p critical cliques (isolated vertices not counted), or the instance has

no solution.

Proof. The unaffected vertices induce a subgraph that belongs to H or H[0], respectively,
hence it has at most p bags. Any affected vertex is adjacent to either all or none of the
vertices of any of these bags (since the latter ones are unaffected). In the worst case, k edits

affect 2k vertices, and each of them becomes a critical clique of its own. Together this yields
the bound. ¢

Lemma 3 implies again that all bag modification problems for fixed H are in FPT: Assign
every critical clique in the input graph to some bag of the target graph (or make its vertices
isolated, in the H|[0] case). These are at most p + 1 options for every critical clique. For
the isolated vertices it suffices to decide how many of them we put in each bag, which are
O(nP) options in total. Hence the time for this naive branching algorithm is O*((p + 1)2++P).
Instead of this poor bound we will now show:

Theorem 4 Any bag modification problem with a fixed graph H can be solved in O*(Q‘/Elogk)
time, hence it belongs to SUBEPT.

Proof. First we focus on H-BAG EDITING. The other problem variants can then be treated
in the same way, with minor modifications.

Let a, 0 < a < 1, be some fixed number to be specified later. To avoid bulky notation,
we omit rounding brackets and work with terms like k% as if they were integers. Let p denote
the number of vertices of our fixed graph H. One difficulty is that the sizes of the p bags are
not known in advance. Our preprocessing phase takes care of that.

Preprocessing phase: Initially all bags are declared open. For every bag we create k® places
that we successively treat as follows. At every place we branch: Either we close the bag and
leave it, or we decide on a critical clique of the input graph and put any of its vertices in the
bag. (Clearly, the latter choice of a vertex from a critical clique is arbitrary. By Proposition
2 we can even immediately fill further places with the entire critical clique, but our analysis
will not take advantage of that.) Due to Lemma 3 these are at most 2k 4+ p + 1 branches,
hence the total number of branches is (2k + p + 1)P** = O(k)P** = 2k*198F Note that p is
fixed, and constant factors are captured by the unspecified base of log in the exponent.

Every open bag has now k% vertices (where k is the initially given parameter value). We
will not add any further vertices to closed bags. Vertices that are not yet added to bags are
called undecided. Finally we do all necessary edits of edges between different bags, to stick
to the structure of the target graph given by H, and subtract the number of these edits from
k, the number of remaining edits.

Main phase: In every branch obtained in the preprocessing phase we apply further branching
rules that will further reduce the parameter k by edits. The branching rules are applied
exhaustively in the order described below. In the following we first consider the special case
that all bags are open. Later we show how to handle the presence of closed bags, too.

All bags are open: We describe the branching rules and the situations after their exhaustive
application.

o If there exists an undecided vertex v and a bag B such that u is adjacent to some but
not all vertices of B, then we branch as follows: either insert all missing edges between
u and B, or delete all edges between u and B. (But for now, u is not yet added to
any bag.) The branching vector is some (i, k* — i) with two positive entries, or a better
vector if already more than k% vertices got into B.

e Now every undecided vertex w is either completely adjacent or completely non-adjacent
to each bag B. We say that u fits in B, if u is adjacent to exactly those bags that
belong to N[B]. Remember that H has no true twins. It follows that every vertex u
fits in at most one bag.

o If there exists an undecided vertex w that fits in no bag, we branch as follows: we
decide on a bag for w, put w in this bag, and do the necessary edits. Since u does

not fit anywhere, we need at least k% edits, thus the branching vector, of length p, is
(k... , k%) or better.

e After that, every undecided vertex u fits in exactly one bag B(u). Suppose that two
undecided vertices v and v have the wrong adjacency relation. That is, either uv is an
edge but B(u) and B(v) are not adjacent, or wv is not an edge but B(u) and B(v) are
adjacent or B(u) = B(v). We branch as follows: either we edit uv or not. If we don’t,
then v and v cannot be both added to their designated bags. Then we also decide on
u or v and put that vertex in one of the other p — 1 bags, which again costs at least k¢
edits. Thus, the worst-case branching vector is (1, k%, ..., k%) with 2p — 2 entries k°.

e Finally, all undecided vertices have their correct adjacency relations, hence the graph
belongs to H.

Some bags are closed: We cannot treat closed bags like the open bags, since closed bags can
be small, hence the above branching rules would not guarantee at least k® edits. Therefore
we modify the above procedure. Remember that all edits between bags were already done in
the preprocessing phase, and undecided vertices can be put in open bags only.

Let U be the set of vertices of H corresponding to the open bags. Note that H[U| may
have true twins. In that case we merge every critical clique of H[U] into one superbag. Since
every open bag entered the main phase with k% vertices, trivially, each superbag is larger
than k°.

To place the undecided vertices we perform exactly the same branching rules as above,
but only on H[U] (where superbags have the role of bags). Since we have fewer branches,
the branching vectors do not get worse. A new twist is needed only when we actually add a
vertex u to a superbag S. In every such event we also decide on the bag within S that will
host u. Since every S came from a critical clique of H[U], these latter choices do not change
any more the adjacency relations of u with other vertices in the open bags and with other
undecided vertices. Therefore we can take these decisions independently for all u, and always
choose some bag in S that causes the minimum number of edits of edges between u and the
closed bags.

Complexity result: The worst branching vector we encounter (see above) is (1, k%, ..., k%)
with 2p—2 entries k*. From Lemma 1 we obtain the bound (1+ al(;#k)k = 9k ""logk for some

suitable logarithm base. Since the main phase is applied to every branch resulting from the
prepocessing phase, we must multiply the two bounds: 2+ log kgk'~*logk Choosing a = 1/2
yields the product gVklogh (Note that the base is, arbitrarily, 2 because of the unspecified
logarithm base.)

For H-BAG DELETION and H-BAG INSERTION we proceed similarly. The only difference
is that only one type of edits is permitted, hence some of the branches are disabled, which
cannot make the branching vectors worse. In H[0]-BAG DELETION and H[0]-BAG EDITING
we can treat the set of isolated vertices like another bag; some necessary adjustments are
straightforward. ¢

4 Clique Deletion

If H is the one-vertex graph, then the H[0] edge modification problems have as target graphs a
single clique plus isolated vertices. Instead of the H[0]-BAG terminology we speak in this case
of CLIQUE INSERTION, CLIQUE DELETION, and CLIQUE EDITING, which is more suggestive.
CLIQUE INSERTION is a trivial problem: Since only edge insertions are permitted, all vertices
except the isolated ones must be connected to a clique, thus there is no choice. In this section
we study:

CLIQUE DELETION

Given: an input graph G and a parameter k.

Problem: Change G by at most k edge deletions so as to obtain a clique C' and a set I of
isolated vertices. Equivalently: Delete a set I of vertices incident to at most k edges, and
delete all these incident edges as well, so as to retain a clique.

This should not be confused with problems having a split graph as target graph, as split
graphs can have additional edges between C' and I.

Lemma 5 A partitioning of the vertex set of a graph G into sets C and I is a valid solution
to CLIQUE DELETION if and only if I is a vertex cover of G. Moreover, a minimum vertex
cover I of G also yields a minimum number of edge deletions in G. Consequently, CLIQUE
DELETION is NP-complete.

Proof. The first assertion is evident. For the second assertion, note that CLIQUE DELETION
requests a vertex cover I of G being incident to the minimum number of edges of G. Since
C is a clique, and every edge of G is either in C or incident to I, we get the following chain
of equivalent optimization problems: minimize the number of edges incident to I, maximize
the number of edges in C, maximize |C|, minimize |I|. The final assertion follows from the
NP-completeness of VERTEX COVER. ¢

CLIQUE DELETION is also in SUBEPT by Theorem 4, but besides the generic time bound
with unspecified constants in the exponent, we are now aiming at an FPT algorithm with a
tight time bound, as a function of k and ¢ := |C|. With m being the number of edges in the
input graph, clearly, ¢ must satisfy m — k < %c(c — 1), thus ¢ > % + 1/% +2(m —k). In an
algorithm for CLIQUE DELETION we may guess the exact clique size ¢ above this threshold
and try all possible sizes ¢, which adds a factor smaller than n to the time bound. Therefore
we may assume in the following that c is already prescribed.

Before we turn to an upper complexity bound, we first give an implicit lower bound,
relative to VERTEX COVER parameterized by the solution size.

Proposition 6 Any CLIQUE DELETION algorithm with a time bound O*(b¥/€), where b > 1
is some constant base, yields a VERTEX COVER algorithm with a time bound O*(b"), where
v is the vertex cover size.

Proof. We join our input graph G = (V, E) with a clique K, and define ¢* := |K|. Joining
means that all possible edges between K and V are created. Observe that an optimal solution
for the joined graph consists of an optimal solution for G (a partitioning of V' into some C
and I), with K added to C. Thus, if k edges are deleted in G, then k + (n — ¢)c* edges are
deleted in the joined graph, and the size of the solution clique is ¢* + ¢. Furthermore, the
size of the vertex cover I in G is n — c.

The above reasoning holds for every size c¢*. If we choose ¢* “large” compared to n, but
still polynomial in n, then the number of deleted edges and the clique size are (n — ¢)c* and
c*, respectively, subject to lower-order terms. Their ratio is the vertex cover size v :=n — c.
Using the original notations k£ and ¢ for the number of deleted edges and the clique size,
respectively, it follows that any FPT algorithm for CLIQUE DELETION that runs in time
bounded by some function O*(f(k/c)) could be used to solve also VERTEX COVER in G
within O*(f(n — ¢)) = O*(f(v)) time. ©

Therefore, the best we can hope for is a CLIQUE DELETION algorithm with a time bound
O*(b*/¢), with some constant base b > 1 that cannot be better than in the state-of-the-art
VERTEX COVER algorithm. This bound is also tight in a sense, as we will see below.

The exponent k/c is not an arbitrary measure, rather, it has a natural interpretation: It
can be rewritten as cc%, where the second factor can be viewed as an “edit density”; note that

C(ffl) is the ratio of deleted edges and remaining edges in the target graph. For technical

reasons it will be convenient to define the edit density slightly differently as d := 2k/c?
where ¢ := ¢— 1. Furthermore, in applications we are mainly interested in instances that are
already nearly cliques, thus we keep a special focus on the case d < 1 in the following.

We start our algorithm for CLIQUE DELETION with a single reduction rule: Consider any
vertex v of degree smaller than ¢/. Clearly, v cannot be in a clique C' of size ¢, hence it must
be in I, and we can remove it without changing the problem. It also follows that it is correct
to iterate this process.

Reduction rule: Remove any vertex v of degree smaller than ¢/, along with all incident
edges, and subtract the degree of v from the parameter.

After exhaustive application of this rule there remains a graph where all vertex degrees
are at least ¢’. In order words, we compute the ¢’-core. From now on we can suppose without
loss of generality that, already in G, all vertices have degree at least ¢’.

Lemma 7 If a graph where all vertex degrees are at least ¢ admits a solution to CLIQUE
DELETION with at most k edge deletions, |C| = ¢ + 1, and |I| = i, then we have i < 2k/c/,

. L 2 . . - 2 . /
and in the case d := 2k/c’* < 1 this can be improved to i < T3 k/c.

Proof. Let h be the number of edges in I. Since at most k edge deletions are permitted, we
have i’ — h < k. Since h < k (or we must delete too many edges already in I), it follows
i <2k/d =dd.

10

For d < 1, this further implies i < ¢/. Using h < i?/2, the previous inequality ic’ — h < k
yields i/ —i2/2 < k, thus i2 — 2¢/i + 2k > 0 with the solution i < ¢ —+v/¢2 — 2k. (Recall
that ¢ < ¢/, thus the other solution is already excluded.) By using simple algebra this can be
rewritten as

2 — (? - 2k) 2k 2
i<d—Ve? k=" = = k/c.
- d+Vc?2 -2k JH+V2-2k 1++/1—-2k/c? /

Finally remember 2k/c? = dc. o

Note that the factor in front of k/¢’ grows only from 1 to 2 when d grows from 0 to 1.
To make this factor more comprehensible, we may also simplify it to a slightly worse upper
bound: Since /1 —d > 1—d, we have i < QL_d -k/c’. We also remark that CLIQUE DELETION
is trivial if k¥ < ¢/, because, after reduction to the ¢’-core, either there remains a clique, or
the instance has no solution.

2 /
Theorem 8 CLIQUE DELETION can be solved in O*(1.2738 v ke) time if d < 1, and in
general in O*(1.27382F/<") time.

Proof. First we apply our reduction rule, in polynomial time. Let G be the remaining graph.
Due to Lemma 5 it suffices then to compute a vertex cover of minimum size in G. As for the
time bound, the base comes from the VERTEX COVER algorithm in [4], and the exponent
comes from the bounded size 7 in Lemma 7. For large edit densities we may still use the
algorithm with the simpler bound from Lemma 7. ¢

In the time bound from Theorem 8 we may replace ¢’ with ¢, which does not make a
difference asymptotically, and write O*(1.27382k/). The following result gives a time bound
as a function of k only, as in the previous section, but with a specified base.

Corollary 9 CLIQUE DELETION can be solved in O*(1.6355VFInK) time.

Proof. Depending on ¢, either we run the algorithm from Theorem 8 in O*(1.2738%%/¢)
time, or we check in a brute-force manner all subsets of ¢ vertices for being cliques. The
latter method runs in O*((2k + ¢)€) time, since at most 2k + ¢ non-isolated vertices exist
due to Lemma 3. For any fixed k, compare the expressions 1.2738%k/¢ and (2k + ¢)¢. They
decrease and increase, respectively, as functions of ¢. Hence their minimum is maximized if
they are equal. This happens at approximately ¢ = 0.4921/k/Ink. Plugging in this ¢ yields
the asserted time bound. ¢

One may wish to improve the naive O*(2k + ¢°) bound, and hence the Corollary, by
fast exclusion of most c-vertex subsets as candidates for the clique C. However, the maxi-
mum clique problem cannot be solved in O(f(c) - n°©)) time for any function f, under the
Exponential Time Hypothesis [3].

11

5 Clique Editing

Recall that CLIQUE EDITING is the problem of editing at most k edges so as to obtain a
clique C, say of size ¢, and a set I of n — ¢ isolated vertices. In the following theorem, c is
part of the input.

Theorem 10 CLIQUE EDITING with prescribed size ¢ of the target clique is W/[1]-complete
in parameter n — ¢, hence also NP-complete.

Proof. We argue with the (non-parameterized) optimization version and show that minimiz-
ing the number of edited edges is equivalent to finding a set I of n—c vertices being incident to
the minimum number of edges. This claim is verified as follows. Note that the edges incident
to I are exactly those to be deleted, and minimizing deletions means maximizing the number
of remaining edges. Since c is presecribed, this also minimizes the number of edge insertions
needed to make C' a clique. Due to [11], finding at least s vertices that cover at most ¢ edges,
known as MINIMUM PARTIAL VERTEX COVER, is W[l]-complete in the parameter s. Thus
our assertion follows by letting s :==n —c. ¢

Note that we cannot simply use Theorem 10 to conclude NP-completeness of CLIQUE
EDITING when the size ¢ is arbitrary. The catch is that the prescribed clique sizes ¢ in
the reduction graphs may be different from ¢ in optimal solutions to CLIQUE EDITING on
these graphs, and our problem might still be polynomial for the “right” c. Actually, NP-
completeness has been proved in [12].

Another equivalent way to state the CLIQUE EDITING problem is: Given a graph G, find
a subset C of vertices that induces a subgraph that maximizes the number of edges minus
the number of non-edges. Denoting the number of edges by m(G), the objective can be
written as m(G[C]) —m(G[C]). This formulation also gives rise to an extension to a weighted
version: For a given real number w > 0, maximize m(G[C]) — w - m(G[C]). Now the effect of
w becomes interesting. The problem is trivial for w = 0 (the whole vertex set is an optimal
('), and NP-complete if w is part of the input (since a maximum clique is an optimal C' if w
is large enough). But what happens in between? What is the complexity for any constant
w > 07 We must leave this question open.

Next we propose an FPT algorithm for CLIQUE EDITING when k is the parameter. It
works if ¢ is part of the input, and hence also for free ¢, as we can try all, at most n, values
of ¢. Membership in SUBEPT follows from Theorem 4, but as earlier we are also interested
in the dependency of the time bound on c. The following algorithm uses similar ideas as the
earlier ones.

Theorem 11 CLIQUE EDITING can be solved in O*(21°8°%/¢) time.

Proof. We have to decide for every vertex whether to put it in C or in [.

Consider the following reduction rule: Put every vertex v of degree at most (¢—1)/2 in I,
and delete the incident edges. The correctness is seen as follows. Assume that v € C in the
final solution. Since v has degree at most (¢ — 1)/2, at least (¢ — 1)/2 edges between v and
the rest of C' have been inserted. If we had instead decided v € I, we would have inserted

12

no edges incident to v, but deleted the at most (¢ — 1)/2 incident edges, which is not more
expensive.

After exhaustive application of the reduction rule, there remains a graph of minimum
degree at least ¢/2. We can assume without loss of generality that already the input graph
has minimum degree at least ¢/2. We begin with branching. A vertex is called undecided if
it is not yet put in C' or I. Initially we guess one vertex of C', which adds only a linear factor
to the time bound. All other vertices are undecided in the beginning.

As long as there exists an undecided vertex v which is not adjacent to all of C', we branch
on v. In the I := I'U{v} branch we delete the, at least ¢/2, incident edges. (Whenever some
vertex degrees fall below ¢/2 because of the deletions, we first apply the reduction rule again.)
In the C' := C' U {v} branch we insert at least one edge that is missing in C. After exhaustive
application, all undecided vertices are adjacent to all vertices in C'. If the undecided vertices
form a clique, we are done, as we can add the undecided vertices to C, and if we get |C| > ¢,
some surplus vertices are moved to I without branching. Suppose that the other case holds:
two non-adjacent undecided vertices u and v exist. Then we branch by setting C':= CU{u, v}
or I :=ITU{u} or I :=1U{v}. In the first branch we must insert an edge, and otherwise
delete at least ¢/2 edges.

Our rules have, obviously, the worst-case branching vectors (1, ¢/2) and (1,¢/2,¢/2), and
Lemma 1 yields the time bound. ¢

6 Some Hardness Results

All bag modification problems are trivially in NP. In this section we prove the NP-completeness
of bag modification problems for many target graphs H. We give a general construction that
“lifts” NP-completeness from a considered H to larger graphs H'. That is, we will in poly-
nomial time reduce H-BAG EDITING to H'-BAG EDITING, for certain graphs H and H’
specified later on.

The general situation is as follows. Let the graph G and parameter k be any instance of
H-BAG EDITING, and let H' be a graph that contains H as an induced subgraph.

We choose a particular subset S of vertices of H' such that H'[S] is isomorphic to H.
Note that H may have several occurrences as induced subgraph in H’, but we fix some set
S. Let Sp be some set of vertices of H' — S which are adjacent to no vertices of S. (But
Sp is not necessarily the set of all such vertices.) Similarly, let S; be some set of vertices of
H' — S which are adjacent to all vertices of S. From G we construct a graph G’ as follows,
in polynomial time. We take Sy U S from H’ and replace every vertex of So U S; with a
bag of size ¢, for some number ¢ > 2k. Two bags are joined by all possible edges (by no
edges) if the corresponding vertices in H' are adjacent (not adjacent). Then we add G and
insert all possible edges between S7 and the vertices of G. Figure 2 is a simple sketch of the
construction that shall help remember the role of Sy and 57.

If G with parameter k is a yes-instance of H-BAG EDITING, then we can take the at most
k edits that yield a solution, and mimic them in the subgraph G of G'. This immediately
implies that G’ with parameter k is a yes-instance of H'-BAG EDITING: we can map the
vertices of G onto S to obtain an edited graph whose critical-clique graph is an induced

13

Figure 2: Thick lines mean that all possible edges between the induced subgraphs exist,
dotted lines mean that some of the edges may exist. Inflation of the vertices to bags is not
shown here.

subgraph of H’'. (Assumption ¢ > 2k is not needed for this direction.)

However the converse does not hold in general: “If G’ with parameter k is a yes-instance
of H'-BAG EDITING, then G’ with parameter k is a yes-instance of H-BAG EDITING.” Our
aim in the following is to show this converse under certain conditions on H and H’. The
equivalence will then establish the desired reduction.

Specifically, suppose that the following technically looking condition is satisfied. Here,
an embedding of a graph into another graph means that edges are mapped to edges, and
non-edges are mapped to non-edges, i.e., the embedded graph is an induced subgraph of the
host graph. Remember that H is isomorphic to H'[S].

Embedding condition: Let J be any induced subgraph of H' isomorphic to H'[Sy U S].
Accordingly, we embed J into any graph of H’ and divide the vertex set of J in two sets Uy
and U;. These are the sets of those vertices which come from Sy and Sy, respectively. For
every such embedding, let T be the set of vertices ¢ such that N[t] contains all vertices of Uy
and no vertex of Uy. Then the subgraph induced by T is always in H.

Note that there may exist many possible embeddings of .J into a host graph from H’, and
our condition must hold for each of them. We also remark that 7" may contain some vertices
of Ul.

Now suppose that G’ with parameter k is a yes-instance of H'-BAG EDITING, that is, at
most k edge edits in G’ have produced a graph in H’. Since k edits affect at most 2k vertices,
but ¢ > 2k, we conclude that every bag in the edited graph corresponding to a vertex of
So U 57 still has at least one unaffected vertex. Accordingly, let U be some set of unaffected
vertices, containing one such vertex from each of the bags. The subgraph induced by U in
the edited graph is then isomorphic to H'[Sy U Si]. Let Uy and U; be the subset of those
vertices of U corresponding to vertices of Sy and 51, respectively. Then we have U = UyUU].
Furthermore, since U is unaffected, all vertices of G are still adjacent (non-adjacent) to all
vertices of Uy (Up).

14

Recall that H and H' are assumed to satisfy our embedding condition. Take as T the
vertex set of G. It follows that, after editing, the vertices of G form a graph in H. Since
at most k edits have been done in the whole graph, we get that G with parameter k is a
yes-instance of H-BAG EDITING. To summarize:

Lemma 12 If the embedding condition holds for graphs H and H' and some vertex sets
S, 50,51 (as specified above), then H-BAG EDITING is reducible to H'-BAG EDITING in
polynomial time.

The embedding condition looks more complicated than it is. When it comes to specific
graphs H and H’, it is often easy to apply, as we will see in the examples below. We only
have to find suitable sets Sy and S;. For convenience we refer to the vertices in Sy and S7 as
0-vertices and 1-vertices, respectively, and we call any graph in H a graph H of bags.

Theorem 13 H'-BAG EDITING is NP-complete for, at least, the following graphs H':
complete multipartite graphs where some partite set has at least 3 vertices;

the complete multipartite graph with partite sets of exactly 2 vertices;

Ks-free graphs with maximum degree at least 3.

Proof. H-BaGg EpITING for H = K'p is p-CLUSTER EDITING, which is known to be NP-
complete for every p > 2 [16]. By virtue of Lemma 12 we reduce H-BAG EDITING for
H = K,, with a suitable p > 2, to H’-BAG EDITING for the mentioned graphs H'.

In a complete multipartite graph H’, let b denote the size of some largest partite set, and
assume b > 3. We choose p =b—1 > 2. We let S1 be empty, and we let Sy consist of a single
vertex in a partite set of size b. The vertices of H' being non-adjacent to this 0-vertex are
in the same partite set, hence they induce a graph Kj 1 = K,. No matter where we embed
our O-vertex in a graph H' of bags, the set T' as defined in the embedding condition forms a
graph H = K, 1 of bags. (For partite sets smaller than b, note that bags are allowed to be
empty.) Hence the embedding condition is satisfied.

Next consider H' = Ks9 = C4. We choose p = 2, and we let S consist of two non-
adjacent vertices, while Sy is empty. Clearly, the common neighbors of the two 1-vertices
induce the graph Ky = H. The only possible embedding of our two non-adjacent 1-vertices
in a graph H' = C4 of bags is to put them in two non-adjacent bags. Then the set T forms
again a graph Ko = H of bags, thus the embedding condition is satisfied.

To prove NP-completeness of H'-BAG EDITING for H' = Ky o, let H = Ky o but with
two vertices less. Then literally the same arguments as in the previous paragraph show that
the embedding condition is satisfied. Using this observation as induction step and the case
H' = Kj as the induction base, this proves the claim by induction on the number of partite
sets.

Finally, consider any Ks-free graph H' of maximum degree d > 3. (That is, H' is K3-free
but not merely a disjoint union of paths and cycles.) Fix some vertex v of degree d, and
some neighbor u of v. We choose p =d — 1, S; = {v}, and Sy = {u}. The vertices adjacent
to v and non-adjacent to u obviosuly induce a graph K, 1 = K,. For any embedding of an
adjacent pair of a 1-vertex and a O-vertex into a graph H' of bags, the set T' forms a graph
H = f(p of bags. This holds because every vertex in H’ has at most d neighbors, they are

15

pairwise non-adjacent, and one of the d bags neighbored to the 1-vertex is already occupied
by the 0-vertex. Once more, the embedding condition is satisfied. ¢

The same construction also lifts NP-completeness results from H|[0] to H'[0], whenever we
can choose S; = () and a suitable Sy. Our construction also works for H’-BAG DELETION and
H'-BAG INSERTION; the only modification is that only one type of edge edits is permitted.
However, note that we need an NP-complete case to start with. For H'-BAG DELETION we
can use K, with p > 3. As for H'-BAG INSERTION, remember that K,-BAG INSERTION is
polynomial [16] for every p. Still we can start from P3 instead and get, for instance, the
following results:

Theorem 14 H'-BAG INSERTION is NP-complete for, at least, the graphs H' = P3, and
H' = P, and H' = C,, for each n > 6.

Proof. P3-BAG INSERTION in G means to delete in G’ a minimum number of edges so as
to obtain a graph consisting of a complete bipartite graph (biclique) and isolated vertices.
This in turn is equivalent to the problem of finding a biclique with a maximum number of
edges. The latter problem is NP-complete (even in bipartite graphs and hence in general
graphs) due to [14]. Finally we reduce P3-BAG INSERTION to P,-BAG INSERTION for each
n > 6 by setting S; = () and Sy isomorphic to P,,_4. Similarly, we reduce P3-BAG INSERTION
to C,,-BAG INSERTION for each n > 6 by setting S; = () and Sy isomorphic to P,_5. It is
straightforward to verify the embedding condition. ¢

These results are applications of only one reduction technique. We may get out more
NP-complete cases, but the construction also fails for some other graphs. We also remark
that P3s-BAG DELETION is polynomial: consider the complement graph and proceed similarly
as in [16]. It would be interesting to achieve a complexity dichotomy for all target graphs.

Acknowledgments

This work has been partially supported by the following project grants: “Generalized and fast
search strategies for parameterized problems”, grant 2010-4661 from the Swedish Research
Council (Vetenskapsradet), and “Data-driven secure business intelligence”, grant 11S11-0089
from the Swedish Foundation for Strategic Research (SSF). The authors would also like to
thank Gabriele Capannini for sharing the data and for initial discussions of the applications,
and Henning Fernau for intensive discussions of some open problems during a short visit at
Chalmers.

References

[1] P. Burzyn, F. Bonomo, G. Durédn: NP-completeness Results for Edge Modification Prob-
lems. Discr. Appl. Math. 154, 1824-1844 (2006)

[2] L. Cai: Fixed-Parameter Tractability of Graph Modification Problems for Hereditary
Properties. Info. Proc. Lett. 58, 171-176 (1996)

16

[3]

[14]

[15]

[16]

J. Chen, X. Huang, I.A. Kanj, G. Xia: Strong Computational Lower Bounds via Param-
eterized Complexity. J. Comput. Syst. Sci. 72, 1346-1367 (2006)

J. Chen, I.LA. Kanj, G. Xia: Improved Upper Bounds for Vertex Cover. Theor. Comp.
Sei. 411, 3736-3756 (2010)

L.E. Dickson: Finiteness of the Odd Perfect and Primitive Abundant Numbers with n
Distinct Prime Factors. Amer. J. Math. 35, 413-422 (1913)

R.G. Downey, M.R. Fellows: Parameterized Complezity. Springer, New York (1999)

M.R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, J. Uhlmann: Graph-Based Data
Clustering with Overlaps. Discr. Optim. 8, 2-17 (2011)

F.V. Fomin, S. Kratsch, M. Pilipczuk, M., Pilipczuk, Y. Villanger: Tight Bounds for
Parameterized Complexity of Cluster Editing. In: Portier, N., Wilke, T. (eds.) 30th
Symp. Theor. Aspects of Computer Science STACS 2013. LIPIcs, vol. 20, pp. 32-43,
Dagstuhl (2013)

P.A. Golovach, D. Paulusma, I. Stewart: Graph Editing to a Fixed Target. In: Lecroq,
T., Mouchard, L. (eds.) 24th Int. Workshop on Combin. Algor. IWOCA 2013. LNCS,
vol. 8288, pp. 192-205, Springer, Heidelberg (2013)

J. Guo: A More Effective Linear Kernelization for Cluster Editing. Theor. Comp. Sci.
410, 718-726 (2009)

J. Guo, R. Niedermeier, S. Wernicke: Parameterized Complexity of Vertex Cover Vari-
ants. Theory Comput. Syst. 41, 501-520 (2007)

I. Kovag, 1. Sele¢éniova, M. Steinovd: On the Clique Editing Problem. In: 39th Int.
Symp. on Math. Found. of Computer Science MFCS 2014. LNCS, to appear (2014)

A. Natanzon, R. Shamir, R. Sharan: Complexity Classification of some Edge Modifica-
tion Problems. Discr. Appl. Math. 113, 109-128 (2001)

R. Peeters: The Maximum Edge Biclique Problem is NP-complete. Discr. Appl. Math.
131, 651-654 (2003)

R. Niedermeier: Invitation to Fized-Parameter Algorithms. Oxford Lecture Series in
Math. and its Appl., Oxford Univ. Press (2006)

R. Shamir, R. Sharan, D. Tsur: Cluster Graph Modification Problems. Discr. Appl.
Math. 144, 173-182 (2004)

17

