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Abstract

We present a model for predicting inflected
word forms based on morphological analo-
gies. Previous work includes rule-based algo-
rithms that determine and copy affixes from
one word to another, with limited support for
varying inflectional patterns. In related tasks
such as morphological reinflection, the algo-
rithm is provided with an explicit enumeration
of morphological features which may not be
available in all cases. In contrast, our model is
feature-free: instead of explicitly representing
morphological features, the model is given a
demo pair that implicitly specifies a morpho-
logical relation (such as write:writes specify-
ing infinitive:present). Given this demo rela-
tion and a query word (e.g. watch), the model
predicts the target word (e.g. watches). To
address this task, we devise a character-based
recurrent neural network architecture using
three separate encoders and one decoder.

Our experimental evaluation on five differ-
ent languages shows that the exact form can
be predicted with high accuracy, consistently
beating the baseline methods. Particularly,
for English the prediction accuracy is 95.60%.
The solution is not limited to copying affixes
from the demo relation, but generalizes to
words with varying inflectional patterns, and
can abstract away from the orthographic level
to the level of morphological forms.

1 Introduction

Analogical reasoning is an important part of human
cognition (Gentner et al., 2001). Resolving analo-
gies by mapping unknown data points to known
analogous examples allow us to draw conclusions
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about the previously unseen data points. This is
closely related to zero-shot and one-shot learning,
strategies that are useful when training data is very
limited. In linguistics, analogies have been studied
extensively, e.g. phonetic analogies (Yvon, 1997)
and semantic analogies (Mikolov et al., 2013a). In
general, an analogy is defined as a quadruple of ob-
jects A, B, C, and D having the analogical rela-
tion: A is to B as C is to D, and the problem is
to predict D given A, B, and C. In this work, we
study morphological analogies where A, B, C, and
D are words. The pair (A, B) represents a demo
relation representing some morphological transfor-
mation between two word forms, and the problem is
to transform the query word C' from the source form
to the target form as specified by the demo relation.
The task may be illustrated with a simple example:
see is to sees as eat is to what?

A good solver for morphological analogies can be
of practical help as writing aids for authors, sug-
gesting synonyms in a form specified by examples
rather than using explicitly specified forms. Further-
more, models that can generate words with correct
inflection are important building blocks for many
tasks within natural language processing. To gain in-
sight about how systems can learn the right abstrac-
tion using limited supervision to generate inflected
words, is important for how to create systems for
more complex language generation tasks, such as
machine translation, automatic summarization, and
dialog systems.

Previous work has tackled the problem of predict-
ing the target form by identifying the string trans-
formation (insertions, deletions, or replacements of
characters) in the demo relation, and then trying to
apply the same transformation to C' (Lepage, 1998).



For instance, this algorithm correctly solves the ex-
ample given above, since it just needs to add an s to
the query word.

However, such solutions are brittle, as they are
unable to abstract away from the raw strings, fail-
ing when the given relation is realized differently in
A and B than in C and D. On a basic level, the
model needs to take into account phonological pro-
cesses such as umlaut and vowel harmony, as well
as orthographic quirks such as the rule in English
that turns y into ie in certain contexts. Furthermore,
an even more challenging problem is that the model
will need to take into account that words belong
to groups whose inflectional patterns are different —
morphological paradigms. In all these cases, to be
successful, a solution to this problem needs to ab-
stract away from the raw character-based representa-
tion to a higher level representation of the relations.

In this work, we propose a supervised machine
learning approach to the problem of predicting the
target word in a morphological analogy. The model
is based on character-level recurrent neural networks
(RNNs), which have recently seen much success in a
number of morphological prediction tasks (Faruqui
et al., 2016; Kann and Schiitze, 2016). This model
is able to go beyond the simple string substitutions
handled by previous approaches: it picks up con-
textual string transformations including orthograpic
and phonological rules, and is is also able to gener-
alize between inflection paradigms.

Machine learning approaches,  including
character-based RNNs, have been successfully
applied in several types of prediction problems in
morphology, including lemmatization, inflection
and reinflection (see Section 2.2). However, these
tasks have either been more restricted than ours
(e.g. lemmatization), or relied on an explicit
enumeration of morphological features which may
not be available in all cases. In contrast, our model
is a completely feature-free approach to generating
inflected forms, which can predict any form in a
morphological paradigm.

The fact that our model does not rely on explicit
features makes it applicable in scenarios with under-
resourced languages where such annotations may
not be available. However, since the model is trained
using a weaker signal than in the traditional feature-
based scenario, it needs to learn a latent representa-

tion from the analogies that plays the same role as
the morphological features otherwise would, mak-
ing the task more challenging.

2 Related work

Analogical reasoning is useful in many different
tasks. In this section we will limit the survey to work
that is relevant to morphological applications.

2.1 Morphological analogies

Lepage (1998) presented an algorithm to solve mor-
phological analogies by analyzing the three input
words, determining changes in prefixes, infixes, and
suffixes, and adding or removing them to or from the
the query word, transforming it into the target:
reader:unreadable = doer:x — x = undoable
Stroppa and Yvon (2005) presented algebraic def-
initions of analogies and a solution for analogical
learning as a two-step process: learning a mapping
from a memorized situation to a new situation, and
transferring knowledge from the known to the un-
known situation. The solution takes inspiration from
k-nearest neighbour (k-NN) search, where, given a
query ¢, one looks for analogous objects A, B,C
from the training data, and selects a suitable output
based on a mapping of A, B, C from input space to
output space. The task studied in these papers is the
same as in the current paper. The solutions, are how-
ever much limited in the generality. Our solution can
learn very flexible relations and different inflectional
patterns.

2.2 Character based modeling for morphology

The 2016 and 2017 SIGMORPHON shared tasks on
morphological reinflection (Cotterell et al., 2016a;
Cotterell et al., 2017) have spurred some recent in-
terest in morphological analysis. In this task, a word
is given in one form, and should be transformed into
a form specified by an explicit feature representa-
tion. These features represent number, gender, case,
tense, aspect, etc. In comparison, the problem of
morphological analogies is more difficult, as no ex-
plicit tags are provided: the forms must instead be
inferred from a demo relation.

While morphological inflection tasks have pre-
viously been studied using rule-based systems
(Koskenniemi, 1984; Ritchie et al., 1992), learned
string transducers (Yarowsky and Wicentowski,



2000; Nicolai et al., 2015a; Ahlberg et al., 2015;
Durrett and DeNero, 2013), they have more recently
been dominated by character-level neural network
models (Faruqui et al., 2016; Kann and Schiitze,
2016) as they address the inherent drawbacks of tra-
ditional models that represent words as atomic sym-
bols. This offers a number of advantages: the vo-
cabulary in a character-based model can be much
smaller, as it only needs to represent a finite and
fairly small alphabet, and as long as the charac-
ters are in the alphabet, no words will be out-of-
vocabulary (OOV). Character-level models can cap-
ture distributional properties, not only of frequent
words but also of words that occur rarely (Luong
and Manning, 2016), and they need no tokeniza-
tion, freeing the system from one source of errors.
Neural models working on character- or subword-
level have been applied in several NLP tasks, rang-
ing from relatively basic tasks such as text catego-
rization (Zhang et al., 2015) and language modeling
(Kim et al., 2016) to complex prediction tasks such
as translation (Luong and Manning, 2016; Sennrich
etal., 2016). Because they can recognize patterns on
a subword level, character-based neural models are
attractive in NLP tasks that require an awareness of
morphology.

2.3 Other morphological transformations

Lemmatization is the task of predicting the base
form (lemma) of an inflected word. A lemmatizer
may make use of the context to get (implicit) infor-
mation about the source form of the word (Kosken-
niemi, 1984; Kanis and Miiller, 2005; Chrupala et
al., 2008; Jongejan and Dalianis, 2009; Chakrabarty
et al., 2017). In comparison, our task does not of-
fer contextual information, but instead provides the
(similarly implicit) cues for forms from the demo
relation. With this in mind, predicting the lemma
is just a special case of the morphological analogy
problem. Paradigm filling is the more general task of
predicting all unknown forms in a paradigm (Dreyer
and Eisner, 2011).

2.4 Morphological relations in word
embedding models

Word analogies have been proposed as a way to
demonstrate the utility of, and to evaluate the quality
of neural word embeddings (Mikolov et al., 2013a;

Mnih and Kavukcuoglu, 2013; Nicolai et al., 2015b;
Pennington et al., 2014). Such embeddings show
simple linear relationships in the resulting continu-
ous embedding space that allow for finding impres-
sive analogous relations such as

v(king) — v(man) + v(woman) = v(queen).

Analogies have been categorized as either semantic
or syntactic. (The example with “king” and “queen”
is a semantic analogy, while syntactic analogies
relate different morphological forms of the same
words). Google’s dataset for syntactic analogies
(Mikolov et al., 2013a) was proposed as a task to
evaluate word embedding models on English.

Cotterell et al. (2016b) presented an approach us-
ing a Gaussian graphical model to process word em-
beddings computed using a standard toolkit such as
Word2Vec to improve the quality of embeddings for
infrequent words, and to construct embeddings for
morphological forms that were missing in the train-
ing data (but belonging to a paradigm that had some
form or forms in the data).

3 Neural Morphological Analogies System

In this paper, we present the Neural Morphological
Analogies System (NMAS), a neural approach for
morphological relational reasoning. We use a deep
recurrent neural network with GRU cells that take
words represented by their raw character sequences
as input.

3.1 Morphological relational reasoning with
analogies

We define the task as follows. Given a query word ¢
and a demo word in two forms wq and w9, demon-
strating a transformation from one word form to an-
other, and where ¢ is another word in the same form
as w1, the task is to transform ¢ into the form repre-
sented by ws.

3.2 Recurrent neural networks

A recurrent neural network (RNN) is an artificial
neural network that can model a sequence of arbi-
trary length. Gated RNNs were proposed to solve
some issues of basic “vanilla” RNNs (the difficulty
to capture long dependencies and vanishing gradi-
ents) (Hochreiter, 1998; Bengio et al., 1994). The



Query R er | 1 7
i i i
e (Dﬂ'p GRU ) —_— (Deep GRU ) —_— (Deep GRU ) = o

L

("Demo relation RNN encoder I

o = (n«ep GRU ) —_ (pr GRU ) —_ (Da'p GRU ) ——

.

(Demo relation RNN encoder 2
R— (Deep GRU ) — (Du’[l GRU ) — (Deep GRU ) —_

. J

Decoder RNN.
e — (D(’ep GRU ) — (Devp GRU ) — (nm GRU ) —_

~3p]
\\\) |
~3]

Figure 1: The layout of the proposed model. The demo relation is encoded using two encoder RNNs with shared
weights for the two demo word forms. A fully connected layer FC relation follows the demo relation pair. The query
word is encoded separately, and its embedding is concatenated with the output from FC relation, and fed as the initial
hidden state into the RNN decoder which generates the output while using an attention pointer to the query encoder.

Long Short Term Memory (LSTM) (Schmidhuber
and Hochreiter, 1997) is one of the most famous
types. At every step in the sequence, it has a cell
with three learnable gates that controls what parts
of the internal memory vector to keep (the forget
gate f;), what parts of the input vector to store in
the internal memory (the input gate 7;), and what to
include in the output vector (the output gate o;). The
Gated Recurrent Unit (GRU) (Cho et al., 2014a) is
a simplification of this approach, having only two
gates by replacing the input and forget gates with an
update gate u, that simply erases memory whenever
it is updating the state with new input. Hence, the
GRU has fewer parameters, and still obtains similar
performance as the original LSTM.

An RNN can easily be trained to predict the next
token in a sequence, and when applied to words this
essentially becomes a language model. A sequence-
to-sequence model is a neural language model con-
ditioned on another input sequence. Such a model
can be trained to translate from one sequence to an-
other (Sutskever et al., 2014; Cho et al., 2014b).
This is the major building block in modern neural
machine translation systems, where they are com-
bined with an attention mechanism to help with the
alignment (Bahdanau et al., 2015).

In language settings it is common to have a linear
input layer that learns embeddings for a vocabulary
of words. However, these models suffer from the
limitations of having fixed word vocabularies, and
being unable to learn subword patterns. As an alter-
native, an RNN can work either using a vocabulary

of subword units, or directly on the raw character
stream, as is the case in this paper.

3.3 Model layout

The proposed model has three major parts, the re-
lation encoder, the query encoder, and the decoder,
all working together to generate the predicted target
form given the three input words: the demo relation
(w1, wa), and the query word q. The whole model is
trained end-to-end and requires no other input than
the raw character sequences of the three input words
w1, we, and q.

A. The relation encoder. The first part encodes
the demo relation Rgepo = (w1, w2) using an en-
coder RNN for each of the two words wy and ws.
The relation encoder RNNs share weights but have
separate internal state representations. The outputs
of the relation encoders are fed into a fully con-
nected layer with tanh activation FC relation:

h,. = 75anhf(I/V'rel [grel (07 W1)7 Grel (07 Wg)]),

where g,..; is the output from the relation encoder
RNN (using zero vectors as initial hidden states),
w1, Wo are sequences of one-hot encodings for the
characters of w; and wy, W, is the weight matrix
for the FC relation layer, and tanh is the element-
wise nonlinearity. Here, [x, y] means the concatena-
tion of the vectors x and y.



B. The query encoder. The query word q is en-
coded separately using a distinct encoder RNN. The
final output from the query encoder is fed together
with the output from FC relation (A), through a sec-
ond fully connected layer (with tanh activation) FC
combined.:

hcomb = tanh(Wcomb [hrela 9q (07 q)])u

where h,..; is the output from FC relation, g, is the
output from the query RNN encoder, q is a sequence
of one-hot encodings of the chracters of the query
word, W ,mp is the weight matrix for the FC com-
bined layer, and tanh is the element-wise nonlinear-
ity. The result h,,,,; is fed as the initial hidden state
into the RNN decoder.

C. The decoder. The decoder RNN employs a
standard attention mechanism (Bahdanau et al.,
2015), computing a weighted sum of the sequence
of outputs of the query encoder at every step t; in
the generation process. For each step ¢, in the query
encoder, the attention weight is computed using a
multi-layer perceptron taking the decoder state at
tq and the query encoder state at t. as inputs. For
each decoder step t4, the output character is decided
by computing a distribution over the alphabet using
the softmax output layer, and then sampling greed-
ily from this distribution; this is fast and has yielded
good results. The distribution p(y;, = i) = hg’e)c; ty
for each character 7 in the alphabet and for each step
t4 in the decoder is modeled using:

hdec;td = S(Wdec {gdec(hcomba y(O:td—l))a a]),

where h,,.; is the output from FC combined (used
as the initial hidden state for the decoder RNN), ggec
is the output from the decoder RNN, y .1, 1) is a
sequence of one-hot encodings of the chracters gen-
erated by the decoder until step t;7 — 1, Wy, is the
weight matrix for the decoder output layer, a is the
weighted sum of hidden states from the query en-
coder RNN computed by the attention mechanism,
and s is the softmax activation function: s(z) =

e The result hge..;, is a vector that sums to

E:iez“>‘
one, defining the distribution over the alphabet at

time ¢4.

The whole model is similar to a sequence-to-
sequence model used for translation, with the ad-

dition of the relation encoder. Figure 1 shows the
architecture of the model pictorially.

4 Experimental setup

This section explains the setup of the empirical eval-
uation of our model: how it is designed, trained, and
evaluated.

4.1 Implementation details

The model was implemented using PyTorch;!' all
source code is freely available.” With the final hy-
perparameter settings (see Section 4.2), the model
contains approximately 155000 parameters, and it
can be trained in a few hours on a modern GPU.

4.2 Hyperparameters

The hyperparameters relevant to the proposed model
are presented in Table 1. The hidden size parame-
ter decides the dimensionality of all four RNNs in
the model, as we noticed no performance gain from
varying them individually.

Hyperparameter Explored Selected
Embedding size 50-350 100
Hidden size 25-350 50
FC relation size 50-350 50
FC combined size 50-350 100
RNN depth 1-3 2
Learning rate 1x1073
L2 weight decay 5x107°
Drop probability 0.0,0.2,...,0.8 0.0

Table 1: Hyperparameters in the model.

4.3 Training

Training was done with backpropagation through
time (BPTT) and minibatch learning with the Adam
optimizer (Kingma and Ba, 2015). For each exam-
ple in a minibatch, a relation type is selected uni-
formly randomly. Then two word pairs are selected
randomly from that realation type; one of these will
be the demo relation, and one will be the query—
target pair. The output from the decoder (see Sec-
tion 3.3 C), is a categorical distribution over the al-
phabet. We use the cross-entropy loss function for

'"http://pytorch.org/
http://mogren.one/
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Training set  Validation set Test set Total
Language Rels WPs Rels WPs Rels WPs Rels WPs
English 10 74187 10 1000 10 1000 10 76187*
Finnish 1293 50269 431 1255 1092 11471 1323 62995
German 1572 70429 421 1271 1249 7768 1572 79468
Russian 1001 56119 290 1421 666 11492 1003 69031
Swedish 10 146551 10 1000 10 1000 10 148551*

Table 2: Number of relations (“Rels”, after discarding size-1 relations) and word pairs (“WPs”) in the data set. *En-
glish and Swedish word pairs are all used exactly twice, once in original order, and once reversed. This means that the
effective number of word pairs for these two languages are double the numbers in this table.

each character at position ¢4 in the output word as
the learning objective for all parameters 6 in the
model:

=24, V() loghey,
_ o ,

£(0)

where N is the length of the target word, yy,) is
the one-hot encoding of the true target at position ¢
and hy, is the model output distribution at position
c. Training duration was decided using early stop-
ping (Wang et al., 1994).

One model with separate parameters was trained
per language. The parameters are shared between
the two encoding RNNs in the relation encoder, but
the query encoder RNN and the decoder RNN have
separate weights, as the model search showed best
performance using this configuration. Ensembling
did not improve the results.

4.4 Baselines

The task considered in this work is closely related
to morphological reinflection, and systems for this
generally obtain higher absolute numbers of predic-
tion accuracy than ours, because more information
is given through the explicit enumeration of mor-
phological tags. Our task is also related to the syn-
tactic analogy task used to evaluate word embed-
dings (Mikolov et al., 2013c), and we also include
the word embedding-based word-level analogy so-
lution as a baseline.

Lepage. This baseline was implemented from the
description in (Lepage, 1998). The algorithm is rule-
based, and uses information collected when comput-
ing edit distance between w; and ws, as well as be-
tween wy and ¢ (Wagner and Fischer, 1974). It can
handle changes in prefix, infix, and suffix, but fails
when words exhibit different inflectional patterns.

Word embedding baseline. This baseline uses
pre-trained word embeddings using Word2Vec
CBOW (W2V) (Mikolov et al., 2013b) and Fast-
Text (FT) (Bojanowski et al., 2016). The FastText
embeddings are designed to take subword informa-
tion into account, and they performed better than
Word2Vec CBOW-based vectors in our experiments.
The prediction is selected by choosing the word in
the vocabulary that has an embedding with the high-
est cosine similarity compared to

v(q) — v(w1) + v(we),

where v(w) is the word embedding of the word w,
q is the query word, and w1, w2 are the two demo
words in the demo relation.

Word embeddings have been used in previous
work for this task (then called syntactic analogies),
but the solution is limited by a fixed vocabulary,
and needs retraining to incorporate new words. Al-
though it is trained without supervision, training re-
quires much data and comparing the resulting vector
above with all words in the vocabulary is expensive.

In this work, pretrained embeddings were down-
loaded and used. The Word2Vec CBOW embed-
dings used were downloaded from Kyubyong Park’s
repository.>. The embeddings were trained using
data from Wikipedia. The FastText embeddings
used were downloaded from the FastText authors’
website.* The embeddings were trained using data
from CommonCrawl and Wikipedia. All the embed-
dings used have 300 dimensions.

To make the word embedding baseline stronger,
we used the Lepage baseline as a fallback whenever
any of the three input words are missing in the vo-
cabulary.

*https://github.com/Kyubyong/wordvectors/
‘nttps://fasttext.cc/
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Accuracy AVG Levenshtein

NMAS Lepage NMAS Lepage

English 95.60% 56.05% 0.06 0.67
Finnish 83.26% 31.39% 0.25 1.76
German 89.12% 76.63% 0.18 0.39
Russian 70.54% 48.19% 0.45 1.01
Swedish 90.10% 64.80% 0.16 0.60

Table 3: Prediction accuracy and average Levenshtein distance of the proposed model (NMAS) trained using one

language. Baseline: Lepage (1998).

4.5 Datasets

One model was trained and evaluated on each of
five different languages. Data for all languages
except for English and Swedish was taken from
the SIGMORPHON 2016 dataset (Cotterell et al.,
2016a). Code for downloading the data and per-
forming dataset split will be made available when
this paper is published.

English. A total of 10 relations and their corre-
sponding inverse relations were considered:

e nouns:
— singular—plural, e.g. dog—dogs

e adjectives:
— positive—comparative, e.g. high—higher

— positive—superlative, e.g. high—highest

— comparative—superlative, e.g. higher—highest

e verbs:

infinitive—past, e.g. sit—sat

infinitive—present, e.g. sit—sits

infinitive—progressive, e.g. sit—sitting

past—present, e.g. sit—sifs
— past—progressive, e.g. sit—sitting

— present—progressive, e.g. sits—sitting

For English, the dataset was constructed using the
word list with inflected froms from the SCOWL
project.’ In the English data, 25,052 nouns, 1,433
adjectives, and 7,806 verbs were used for training.
1000 word pairs were selected randomly for valida-
tion and 1000 for testing, evenly distributed among
relation types.

’See http://wordlist.aspell.net/.

Swedish. Words were extracted from SALDO
(Borin et al., 2013). In the Swedish data, 64,460
nouns, 12,507 adjectives, and 7,764 verbs were used
for training. The division into training, valida-
tion, and test sets were based on the same propor-
tions as in English. The same forms were used
as in English, except that instead of the progres-
sive form for verbs, the passive infinitive was used,
e.g. dta:dtas ‘eat:be eaten’.

Finnish, German, and Russian. For these lan-
guages, data from taskl and task2 in SIGMOR-
PHON 2016 was used for training, and task2 data
was used for evaluation. In this dataset, each word
pair is provided along with morphological tags for
the source and target words. We define a relation
R as the combination of two sets of morphological
tags, for which there exist words in the data.

The SIGMORPHON datasets consist of word
pairs along with the corresponding morphological
tags, specifying properties such as gender, number,
case, and tense. We generate analogies from this as
follows. Firstly, we read each word pair (wy,ws2)
from the dataset, building tables of paradigms by
storing the word pairs together with their tags. If w;
or wy has already been stored in a table (it may be
part of another word pair (uy,us)), then w; and wy
is stored in the same table as u; and uo. Secondly,
when all words are stored in tables, we go through
them, and consider each pair of word forms mem-
bers of a morphological relation. All words having
a given source form and target form make up the set
of words for that relation.

As the task described in this paper differs from the
original SIGMORPHON task, with the additional
requirement that every query—target word pair needs
to be accompanied by a demo relation with the same
forms, all relations with only one word pair were
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discarded. Of the SIGMORPHON datasets, we did
not include Arabic, Georgian, Hungarian, Maltese,
Navajo, Spanish, and Turkish, either because of the
sparsity problem mentioned above,® or because the
morphological features used in the language made it
difficult to generate query—target pairs. The percent-
age of test set word pairs being discarded in the re-
maining languages: Finnish: 1.2%, German: 2.1%,
and Russian: 0.5%. Details about dataset sizes can
be found in Table 2.

4.6 Evaluation

To evaluate the performance of the model, the
datasets for English and Swedish were randomly
split into training, validation, and test sets. Ex-
act dataset split will be distributed when paper
is deanonymized. For the SIGMORPHON Ilan-
guages (Finnish, German, and Russian), the pro-
vided dataset split was used, and the test was per-
formed as specified in the dataset, ignoring the spec-
ified morphological tags. For English and Swedish,
each word pair was tested in both directions (switch-
ing the query word and the target word). Within one
relation type, each word pair was randomly assigned
another word pair as demo relation. Each word pair
was used exactly once as a demo relation, and once
as a query—target pair. Both word pairs in each anal-
ogy was selected from the same data partition; i.e.
the test set for the evaluation. Relations having only
one word pair was dropped from the test set, this is
the only difference between the original SIGMOR-
PHON test data and the test data used here (for more
information, see Section 4.5). Where nothing else is
specified, reported numbers are the prediction accu-
racy. This is the fraction of predictions that exactly
match the target words.

4.7 Data ambiguity

As noted in Section 1, different words can have dif-
ferent inflectional patterns, and some words may
also have the same expression for several forms.
When such ambiguities are presented as the target
in demo relations, there is of course no way for a
system with this setup to know which form to pick.
However, the aim of our study was to keep the setup
realistic, and hence, such ambiguous expressions

®We decided on a threshold of at most 3% of the word pairs
that could be discarded for the evaluation to be meaningful.

Variant Accuracy
Disable attention 89.30%
Disable relation source 93.55%
Disable relation input 37.30%

Table 4: Prediction accuracy of the proposed model with-
out attention mechanism, without the first (source) word
in the demo relation, and completely without demo rela-
tion encoder, respectively. English test set. Size: 50.

was retained in the dataset. The existence of such
forms in the test set may put a bound on the achiev-
able performance, but with a corresponding amount
of ambiguous data in the training set, the model will
learn robustness and the noise provided by the am-
biguities may also help to regularize the training.

5 Results

This section presents the results of the experimental
evaluation of the system.

5.1 Language-wise performance

The prediction accuracy results for the test set can
be seen in Table 3, reaching an accuracy of 95.60%
for English. While Finnish is a morphologically
rich language, with 1323 distinct relations in the
dataset, and with the lowest Lepage baseline score
of all evaluated languages (31.39%), NMAS is able
to learn its relations rather well, with a prediction
accuracy of 83.26%. For German and Swedish, the
performance is 89.12%, and 90.10%, respectively.
They both have more complex morphologies with
more inflectional patterns for nouns and verbs. On
Russian, NMAS obtains an accuracy of 70.54%.
This may be explained by its complex morphology
and phonology, and is consistent with the results of
top scoring systems on the SIGMORPHON tasks.

5.2 Model variants

Attend to relation. (Kann and Schiitze, 2016) ex-
plicitly feeds the morphological tags as special to-
kens being part of the input sequence, and the atten-
tion mechanism learns when to focus on the forms
during output generation. Inspired by this we de-
cided to evaluate a variant of our model where the
embedding of the relation encoder is appended to
the query encoder output sequence, allowing the de-
coder to attend to the whole query as well as the re-
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t-SNE visualization of all demo relation pairs from English validation set embedded using the relation

encoder. Each point is colored by the relation type that it represents.

Variant Accuracy
Attend to relation 95.50%
Attend to relation & No FC combined 94.75%
Reversed words 94.10%
Relation shortcut 94.45%
Auxiliary tags classification 93.85%

Table 5: Prediction accuracy of the proposed model
trained with “attend to relation”, with and without the
relation embedding fed to initial hidden state (FC com-
bined), all words reversed, feeding the relation embed-
ding using a shortcut to each step in the decoder RNN,
and using auxiliary tags classification criterion, respec-
tively. English test set. Size: 50.

lation embedding. The performance of the model
changed minimally by this change (see Table 5), and
there was no clear trend spanning over different lan-
guages. When also disabling FC combined, and thus
the relation embedding input to the decoder, there
was a noticeable decrease in performance: 94.75%
accuracy on the English test set.

Relation shortcut. In the layout of the proposed
model, the information from the relation encoder is
available to the decoder only initially. To explore if
it would help to have the information available at ev-
ery step in the decoding process, a shortcut connec-
tion was added from FC relation to the final layer
in the decoder. This helped the model to start learn-
ing fast (see Figure 4), but then resulted in a slight

decrease in accuracy (94.45% on English test set).
(See Table 5).

Auxiliary training criterion. Multi-task learning
using a related auxiliary task can lead to stronger
generalization and better regularized models (Caru-
ana, 1998; Collobert and Weston, 2008; Bingel and
S¢gaard, 2017). We evaluated a model that used an
auxiliary training task: the model had to predict the
morphological tags as an output from the relation
encoder. This addition gave a slight initial train-
ing speedup (see Figure 4), but did not give a bet-
ter performing model once the model finished train-
ing. This indicates a strength in the originally pro-
posed solution: the model can learn to differentiate
the morphological forms of the words in the demo
relation, even without having this explicit training
signal, something that is also demonstrated by the
visualized relation embeddings (see Figure 2).

Disabling model components. The relation en-
coder learns to represent the different morpholog-
ical relations with nicely disentangled embeddings
(see Figure 2). The fact that the prediction accuracy
drops as far as to 37.30% when disabling the relation
input (see Table 4) indicates that the setup is useful,
and that the model indeed learns to utilize the in-
formation from the demo relation. Disabling only
the first word in the demo relation allows the model
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Figure 4: Prediction accuracy on the English validation
set during training for some variations of the model.

to perform much better (93.55% accuracy), but it
does not reach the accuracy of the full model with
both demo words (95.60%). Disabling the attention
mechanism is a small modification of our model, but
also substantially degrades performance, resulting in
89.30% accuracy on the English test set.

5.3 Mechanisms of word inflection

As English (and many other languages) forms in-
flections mainly by changing suffixes, an experiment
was performed where every word was reversed (e.g.

requirement — tnemeriuger), to evaluate whether
the model can cope with other mechanisms of word
inflection. On this data, NMAS obtains a prediction
accuracy that is only slightly worse than the origi-
nal version. This indicates that the model can cope
with different kinds of inflectional patterns (i.e. suf-
fix and prefix changes). As can be noted in the ex-
ample outputs (see Table 6), the model does handle
several different kinds of inflections (including or-
thographic variations such as y/ie), and it does not
require the demo relation to show the same inflec-
tional pattern as the query word. In fact, often when
the system fails, it does so by inflecting irregular
words in a regular manner, suggesting that patterns
with less data availability poses the major problem.

5.4 Relation embeddings

Figure 2 shows a t-SNE visualization of the embed-
dings from the relation encoder (“FC relation”) of
all datapoints in the English validation set. One can
see that most relations have been clearly separated
into one distinct cluster each, with the exception of
two clusters, both containing points from two rela-
tions each. The first such cluster contains the two re-
lation types “N: Singular-Plural” and “V: Infinitive-
3 Pers. Sg. Present”; both of these are realized
in English by appending the suffix -s to the query
word. The second cluster contains the relation types



Correct:

Demo word 1 Demo word 2  Query Target Output
misidentify misidentifies bottleneck bottlenecks bottlenecks
obliterate obliterated prig prigged prigged
ventilating ventilates disorganizing  disorganizes disorganizes
crank cranker freckly frecklier frecklier
debauchery debaucheries =~ bumptiousness bumptiousnesses bumptiousnesses
Incorrect:

Demo word 1 Demo word 2 Query Target Output
repackage repackaged outrun outran outrunned
misinformed misinform gassed gas gass

julep juleps catfish catfish catfishes
cedar cedars midlife midlives midlifes
affrays affray buzzes buzz buzze

Table 6: Correct (top), and incorrect (bottom) example outputs from the model. Samples from English validation set.

“N: Plural-Singular” and “V: 3 Pers. Sg. Present-
Infinitive”; both of these are realized by the removal
of the suffix -s. It is worth noting that no explicit
training signal has been provided for this to happen.
The model has learned to separate different morpho-
logical relations to help with the downstream task.

Figure 3 shows a t-SNE visualization of the em-
beddings from the query encoder. As we saw with
the relation encoder, query embeddings seem to en-
code information about the morphology as similar
morphological forms cluster together, albeit with
more internal variation and more inter-cluster over-
laps. The task for the query encoder is more com-
plex as it needs to encode all information about the
query word and provide information on how it may
be transformed. To solve the task, and be able to cor-
rectly transform query words with the same relation
type but with different inflection patterns, it needs to
be able to deduce what subcategory of a relation a
given query word belongs to.

5.5 Word embedding analogies

The Lepage baseline proved to be the strongest base-
line for all languages. For instance, for English it
obtains prediction accuracy of 56.05%, compared
to 40.75% for the Word2Vec baseline, and 45.00%
for the FastText baseline. Without the Lepage fall-
back, the Word2Vec baseline scored 14.45%, and
the FastText baseline scored 22.75%. For other lan-
guages, the results were even worse. The datasets
in our study contains a rather large vocabulary, not

only including frequent words. While the fixed vo-
cabulary is one of the major limitations (explaining
the difference between the embedding baselines and
the corresponding ones without fallback), the word
embedding baseline predictions were often incorrect
even when the words were included in the vocabu-
lary. This led us to use the Lepage baseline in the
result tables.

5.6 Relation-wise performance

Figure 5 shows the performance for each relation
type, showing that our model obtains 100% test set
accuracy for the transforms between 3rd pers. sg
present—infinitive. It obtains the lowest accuracy
(91.76%) for plural-singular. From Figure 2 we
have learned that these very relations are the most
difficult ones for the relation encoder to distinguish
between. (The inverse singular—plural is generally
easier; one difficulty of plural-singular seem to be
to determine how many character to remove, while
the patterns for adding the -s suffix is generally sim-
pler). An example demonstrating this can be seen in
Table 6: buzzes:buzz, where the model incorrectly
predicted buzze.

5.7 Example outputs

We have collected some examples from the English
validation set where our model succeeds and where
it fails (see Table 6). Examples of patterns that can
be observed in the failed examples are (1) words
with irregular inflections that the model incorrectly
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Figure 5:

inflects using regular patterns, e.g. outrun:outran,
where the model predicted outrunned; (2) words
with ambiguous targets, e.g. gassed:gas, where the
model predicted gass. If there had existed a verb
gass, it could very well have been gassed in its past-
tense form. Tables with example output for the other
studied languages is provided in the supplemental
material.” In general: the model can learn different
inflectional patterns. Suffixes, infixes, and prefixes
do not pose problems. The query word does not need
to have the same inflectional pattern as the demo re-
lation. When the model do fail, it is often due to an
inflection that is not represented in the training data,
such as irregular verbs.

6 Discussion and conclusions

In this paper, we have presented a neural model that
can learn to carry out morphological relational rea-
soning on a given query word ¢, given a demo rela-
tion consisting of a word in the two different forms
(source form and desired target form). Our approach
uses a character based encoder RNN for the demo
relation words, and one for the query word, and
generates the output word as a character sequence.
The model is able to generalize to unseen words as
demonstrated by good prediction accuracy on the
held-out test sets in five different languages: En-
glish, Finnish, German, Russian, and Swedish. It
learns representations that separate the relations well
provided only with the training signal given by the
task of generating the words in correct form.
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Results for all relations (total), and for each specific relation of the English test set.

Our solution is more general than existing meth-
ods for morphological inflection and reinflection, in
the sense that they require explicit enumeration of
the morphological tags specifying the transforma-
tion; our solution instead learns to build its own in-
ternal representation of this information by observ-
ing an analogous word pair demonstrating the rela-
tion.
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