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Abstract. Deep neural networks have been tremendously successful in a number
of tasks. One of the main reasons for this is their capability to automatically
learn representations of data in levels of abstraction, increasingly disentangling
the data as the internal transformations are applied. In this paper we propose a
novel regularization method that penalize covariance between dimensions of the
hidden layers in a network, something that benefits the disentanglement. This
makes the network learn nonlinear representations that are linearly uncorrelated,
yet allows the model to obtain good results on a number of tasks, as demonstrated
by our experimental evaluation. The proposed technique can be used to find the
dimensionality of the underlying data, because it effectively disables dimensions
that aren’t needed. Our approach is simple and computationally cheap, as it can
be applied as a regularizer to any gradient-based learning model.

1 Introduction

A good data representation should ultimately uncover underlying factors in the raw
data while being useful for a model to solve some task. Deep neural networks learn
representations that are increasingly abstract in deeper layers, disentangling the causes
of variation in the underlying data (Bengio et al., 2013). Formal definitions of disen-
tanglement are lacking, although Ver Steeg & Galstyan (2015) and Achille & Soatto
(2017) both use the total correlation as a measure of disentanglement. Inspired by this,
we consider a simpler objective: a representation disentangles the data well when its
components do not correlate, and we explore the effects of penalizing this linear de-
pendence between different dimensions in the representation. Ensuring independence
in the representation space results in a distribution that is factorizable and thus easy to
model (Kingma & Welling, 2014; Rezende et al., 2014).

We propose a novel regularization scheme that penalizes the correlation between
the dimensions of the learned representations, and helps artificial neural networks learn
disentangled representations. The approach is very versatile and can be applied to any
gradient-based machine learning model that learns its own distributed vector representa-
tions. A large body of literature have been published about techniques for learning non-
linear independent representations (Lappalainen & Honkela, 2000; Honkela & Valpola,
2005; Dinh et al., 2015), but in comparison our approach is simpler, and does not im-
pose restrictions on the model used. The proposed technique penalizes representations
with correlated activations. It strongly encourages the model to find the dimensionality
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of the data, and thus to disable superfluous dimensions in the resulting representations.
The experimental evaluation on synthetic data verifies this: the model is able to learn
all useful dimensions in the data, and after convergence, these are the only ones that are
active. This can be of great utility when pruning a network, or to decide when a network
needs a larger capacity. The disabling of activations in the internal representation can
be viewed as (and used for) dimensionality reduction. The proposed approach allows
for interpretability of the activations computed in the model, such as isolating specific
underlying factors. The solution is computationally cheap, and can be applied without
modification to many gradient-based machine learning models that learns distributed
representations.

Moreover, we present an extensive experimental evaluation on a range of tasks on
different data modalities, which shows that the proposed approach disentangles the data
well; we do get uncorrelated components in the resulting internal representations, while
retaining the performance of the models on their respective task.

The main contributions of this work include: LΣ regularization, a novel approach
penalizing the covariance between dimensions in a representation (see Section 2). The
regularizer encourages a model to use the minimal number of dimensions needed in
the representation. The approach is computationally cheap and can be applied without
any restrictions on the model. The experimental evaluation shows how different mod-
els can benefit from using LΣ regularization. From autoencoders on synthetic data to
deep convolutional autoencoders trained on CIFAR-10, we show that LΣ helps us learn
uncorrelated and disentangled representations (see Section 3).

2 Disentanglement by penalizing correlations

We present a novel regularizer based on the covariance of the activations in a neural
network layer over a batch of examples. The aim of the regularizer is to penalize the
covariance between dimensions in the layer to decrease linear correlation.

2.1 Definition

The covariance regularization term (LΣ) for a layer, henceforth referred to as the coding
layer, is computed as

LΣ =
1

p2
||C||1 (1)

where p is the dimensionality of the coding layer,

||C||1 =

N∑
i,j=1

|Cij |, (2)

is the element wise L1 matrix norm of C, and C ∈ Rp×p is the sample covariance of the
activations in the coding layer over N examples

C =
1

N − 1

N∑
i=1

(H− 1N h̄)T (H− 1N h̄).



Further, H = [h1; ...;hN ] is a matrix of all activations in the batch, 1N is an N -
dimensional column vector of ones, and h̄ is the mean activation.

Fig. 1. When data is distributed along non-linear manifolds, a linear model cannot describe the
data well (left). However, with a non-linear model (right), it is possible to capture the variations of
the data in a more reasonable way and unfold it into a compact orthogonal representation space.

2.2 Usage

As LΣ has the structure of a regularizer, it can be applied to most gradient based models
without changing the underlying architecture. In particular, LΣ is simply computed
based on select layers and added to the error function, e.g. Loss = Error + λLΣ

3 Experiments

This section describes the experimental evaluation performed using LΣ regularization
on different models in various settings, from simple multi-layer perceptron-based mod-
els using synthetic data (see Section 3.2 and 3.3) to convolutional autoencoders on real
data (see Section 3.4). However, before describing the experiments in detail we define
the metrics that will be used to quantify the results.

3.1 Evaluation metrics

A number of different metrics are employed in the experiments to measure different
aspects of the results.

Mean Absolute Pearson Correlation (MAPC) Pearson correlation measures the normal-
ized linear correlation between variables ∈ [−1, 1] where 0 indicates no correlation. To



get the total linear correlation between all dimensions in the coding layer the absolute
value of each contribution is averaged.

MAPC =
2

(p2 − p)

p∑
i<j

|Cij |√
Cii

√
Cjj

Covariance/Variance Ratio (CVR) Though mean absolute Pearson correlation measure
the quantity we are interested in, it becomes ill defined when the variance of one (or
both) of the variables approaches zero. To avoid this problem, we define a related mea-
sure where all variances are summed for each term. Hence, as long as some dimension
has activity the measure remains well defined. More precise, the CVR score is computed
as:

CVR =
1

p2
||C||1
tr(C)

where ||C||1 is defined as in Equation 2. The intuition behind CVR is simply to measure
the fraction of all information that is captured in a linear uncorrelated fashion within
the coding layer.

Top d-dimension Variance/total variance (TdV) TdV measures to what degree the total
variance is captured inside the variance of the top d dimensions. When d is equal to the
actual dimension of the underlying data this measure is bounded in [0,1].

Utilized Dimensions (UD) UD is the number of dimensions that need to be kept to re-
tain a set percentage, e.g. 90% in the case of UD90%, of the total variance. This measure
has the advantage that the dimension of the underlying data does not need to be known
a priori.

3.2 Dimensionality reduction

The purpose of this experiment is to investigate if it is possible to disentangle indepen-
dent data that has been projected to a higher dimension using a random projection, i.e.
we would like to find the principal components of the original data.

The model we employ in this experiment is an auto encoder consisting of a linear
p = 10 dimensional coding layer and a linear outputlayer. The model is trained using
the proposed covariance regularization LΣ on the coding layer.

The data is generated by sampling a d = 4 dimensional vector of independent
features z ∼ N(0, Σ), where Σ ∈ Rd×d is constrained to be non-degenerate and
diagonal. However, before the data is fed to the autoencoder it is pushed through a
random linear transformation x = Ωz. The goal of the model is to reconstruct properties
of z in the coding layer while only having access to x.

The model is trained on 10000 iid random samples for 10000 epochs. 9 experiments
were performed with different values for the regularization constant λ. The first point on
each curve (in Figure 2 and 3) is λ = 0, i.e. no regularization, followed by 8 points log-
arithmically spaced between 0.001 and 1. Each experiment is repeated 10 times using a
different random projection Ω and the average is reported.



The result of the experiment is reported using all four metrics defined in Section 3.1.
The result in terms of MAPC and CVR is reported in Figure 2. The first thing to notice
is that LΣ consistently lead to lower correlation while incurring less MSE penalty com-
pared to L1. Further, looking at the MAPC it is interesting to notice that it is optimal for
a very small values of LΣ . This is because higher amounts of LΣ leads to lowering of
the dimensionality of the data, see Figure 3, which in turn yields unpredictable Pearson
correlation scores between these inactivated neurons. However, this effect is compen-
sated for in CVR for which LΣ quickly converges towards the optimal value of one,
which in turn indicates no presence of linear correlation.
Turning the attention to dimensionality reduction, Figure 3 shows that LΣ consistently
outperform L1. Further, looking closer at the TdV score, LΣ is able to compress the
data almost perfectly, i.e. TdV=1, at a very small MSE cost while L1 struggle even
when accepting a much higher MSE cost. Further, the UD90% scores again show that
LΣ achieves a higher compression at lower MSE cost. In this instance the underlying
data was of 4 dimensions which LΣ quickly achieves. At higher amounts of LΣ the
dimensionality even locationally fall to 3, however, this is because the threshold is set
to 90%.

Fig. 2. In this figure we compare the amount of residual linear correlation after training the model
with LΣ and L1 regularization respectively, measured in MAPC (left) and CVR (right). The
first point on each curve corresponds to λ = 0, i.e. no regularization, followed by 8 points
logarithmically spaced between 0.001 and 1. All scores are averaged over 10 experiments using
a different random projection (Ω).

3.3 Deep network of uncorrelated features

In Section 3.2 we showed that we can learn a minimal orthogonal representation of data
that is generated to ensure that each dimension is independent. However, in reality it is
not always possible to encode the necessary information, to solve the problem at hand,
in an uncorrelated coding layer, e.g. the data illustrated in Figure 1 would first need a
non linear transform before the coding layer. However, using a deep network it should
be possible to learn such a nonlinear transformation that enables uncorrelated features



Fig. 3. The resulting dimensionality the coding layer after training the model withLΣ andL1 reg-
ularization respectively, measured in TdV (left) and UD90% (right). The first point on each curve
corresponds to λ = 0, i.e. no regularization, followed by 8 points logarithmically spaced between
0.001 and 1.All scores are averaged over 10 experiments using a different random projection (Ω).

in higher layers. To test this in practice on a problem that has this property but still is
small enough to easily understand we turn to the XOR problem.

It is well known that the XOR problem can be solved by a neural network of one
hidden layer consisting of a minimum of two units. However, instead of providing this
minimal structure we would like the network to discover it by itself during training.
Hence, the model used is intentionally over-specified consisting of two hidden layers of
four logistic units each followed by a one dimensional logistic output layer.

The model was trained on XOR examples, e.g. [1,0]=1, in a random order until
convergence with LΣ applied to both hidden layers and added to the cost function after
scaling it with λ = 0.2.

As can be seen in Figure 4 the model was able to learn the optimal structure of
exactly 2 dimensions in the first layer and one dimension in the second. Further, as
expected, the first layer do encode a negative covariance between the two active units
while the second layer is completely free from covariance. Note that, even though the
second hidden layer is not the output of the model it does encode the result in that one
active neuron. For comparison, see Figure 5 for the same model trained without LΣ .

3.4 Non-linear uncorrelated convolutional features

Convolutional autoencoders have been used to learn features for visual input and for
layer-wise pretraining for image classification tasks. Here, we will see that it is possible
to train a deep convolutional autoencoder on real-world data and learn representations
that have low covariance, while retaining the reconstruction quality.

To keep it simple, the encoder part of the model used two convolutional layers and
two fully connected layers, with a total of roughly 500.000 parameters in the whole
model. The regularization was applied to the coding layer which has 84 dimensions,
giving a bottleneck effect. The model was trained and evaluated on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009), containing 32x32 pixel colour images tagged



Fig. 4. Covariance matrix (left) and spectrum (right) of the hidden layers of a feed forward neural
network trained with LΣ regularization to solve the XOR problem. Layer one (top) has learned
to utilize unit zero and three while keeping the rest constant, and in layer two only unit two is
utilized. This learned structure is the minimal solution to the XOR problem.

with 10 different classes. The model was trained on 45,000 images, while 5,000 were
set aside for validation, and 10,000 make out the test set. We compare the results from
using LΣ regularization with L1 regularization and with no regularization at all.

The autoencoder was trained with a batch size of 100, using the Adam optimizer (Kingma
& Ba, 2015) with an initial learning rate of 0.001. Training was run until the MSE score
on the validation set stopped improving.1 The regularization parameter λ was chosen to
be 0.08, for a reasonable trade-off between performance and covariance/variance ratio.
The reported scores in Table 1 and Figure 6 are averages from training the model five
times with different initialization.

The results (see Table 1) show that the high-level features become more disentan-
gled and has a lower CVR (6.56) using LΣ regularization. Without regularization, the
score is 20.00, and with L1 regularization the score is 4.03. The model with LΣ regu-
larization obtains a reconstruction error (MSE) of 0.0398, roughly the same as without
regularization (0.0365), both of which are much better than using L1 regularization,
with an MSE of 0.0569. Figure 6 shows the CVR score plotted against the MSE, illus-
trating that the LΣ technique leads to more disentangled representations while retaining
a better MSE score. As you increase the regularization factor both LΣ regularization
pushes down the CVR quickly, while retaining an MSE error that is almost constant. L1
regularization also pushes the model towards learning representation with lower CVR,
although slower, and while worsening the MSE error. The UD90% results show that
LΣ encourages representations that concentrate the variation, and the model constantly

1 The source code will be made available.



Fig. 5. Covariance matrix (left) and spectrum (right) of the hidden layers of a feed forward neural
network trained without regularization to solve the XOR problem.

learns representations with lower UD90% score than using L1. With λ > 0.08, the MSE,
theCV R, and the UD90% all becomes much worse when using L1 regularization, while
the LΣ seems to continue smoothly to improve CV R and UD90%, as the MSE starts to
grow.

Regularizer CVR UD90% MSE

LΣ 6.56 35.18 0.0398
L1 4.03 20.59 0.0569
No regularization 20.00 41.69 0.0365

Table 1. Results from the convolutional autoencoder experiments on CIFAR. The coding covari-
ance is a normalized sum of covariance over the dimensions of the coding layer. Reproduction
MSE is the mean squared error of the reconstructed images produced by the decoder.

4 Related work

Disentanglement is important in learned representations. Different notions of indepen-
dence have been proposed as useful criteria to learn disentangled representations, and a
large body of work has been dedicated to methods that learn such representations.

Cogswell et al. (2016) presented an approach that penalize the off diagonal elements
of the covariance matrix of the activations. In contrast, LΣ penalize the full covariance
matrix. Including the diagonal leads to a lower variance hypothesis, by removing in-
formation not needed to solve the task from the representation, which in turn yields
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Fig. 6. Results from the convolutional autoencoder experiments on CIFAR-10: Left: CVR plotted
against MSE on the CIFAR-10 test set, using LΣ regularization and L1 regularization, respec-
tively. Right: UD90% plotted against MSE on the CIFAR-10 test set, using LΣ regularization and
L1 regularization, respectively. Each point in the plots correspond to doubling the regularization
parameter: λ ∈ [0.0, 0.2, ..., 10.24].

guaranteed lower excess risk Maurer & Pontil (2009). In our experiments, we observed
a slight improvement on the performance, when also penalizing the diagonal. Further-
more, we use the L1 matrix norm (in contrast to the Frobenius norm) in order to promote
a sparse solution.

Cheung et al. (2014) describes a regularizer that penalizes the correlation between
hidden units and labels. In contrast to this, this work aims to learn a hidden represen-
tation that disentangles unknown underlying factors by penalizing correlation between
hidden units. Hence, our method use no labels and can go much further in disentangling
the signal.

Principal component analysis (PCA; Pearson, 1901) is a technique that fits a trans-
formation of the (possibly correlated) input into a space of lower dimensionality of
linearly uncorrelated variables. Nonlinear extensions of PCA include neural autoen-
coder models (Kramer, 1991), using a network layout with three hidden layers and
with a bottleneck in the middle coding layer, forcing the network to learn a lower-
dimensional representation. Self-organizing maps (Kohonen, 1982) and kernel-based
models (Schölkopf et al., 1998) have also been proposed for nonlinear PCA.

Independent component analysis (ICA; Hyvärinen et al., 2004) is a set of techniques
to learn additive components of the data with a somewhat stronger requirement of sta-
tistical independence. A number of approaches have been made on non-linear indepen-
dent components analysis, (Lappalainen & Honkela, 2000; Honkela & Valpola, 2005).
While ICA has a somewhat stronger criterion on the resulting representations, the ap-
proaches are generally more involved. Dinh et al., (2015; 2017) proposed a method to
train a neural network to transform data into a space with independent components.
Using the substitution rule of differentiation as a motivation, they learn bijective trans-
formations, letting them use the neural transformation both to compute the transformed
hidden state, to sample from the distribution over the hidden variables, and get a sam-
ple in the original data space. The authors used a fixed factorial distribution as prior



distribution (i.e. a distribution with independent dimensions), encouraging the model to
learn independent representations. The model is demonstrated as a generative model for
images, and for inpainting (sampling a part of the image, when the rest of it is given).
Achille & Soatto (2017) connected the properties of disentanglement and invariance
in neural networks to information theoretic properties. They argue that having invari-
ance to nuisance factors in a network requires that its learned representations to carry
minimal information. They propose using the information bottleneck Lagrangian as a
regularizer for the weights. Our approach is more flexible and portable, as it can be ap-
plied as a regularization to learn uncorrelated components in any gradient-based model
that learns internal representations.

Brakel & Bengio (2017) showed that it is possible to adversarial training to make a
generative network learn a factorized, independent distribution p(z). The independence
criterion (mutual information) makes use of the Kullback-Leibler divergence between
the joint distribtion p(z) (represented by the generator network) and the product of
the marginals (which is not explicitly modelled). In this paper, the authors propose
to resample from the joint distribution, each time picking only the value for one of
the components zi, and let that be the sample from the marginal for that component,
p(zi). A discriminator (the adversary) is simultaneously trained to distinguish the joint
from the product of the marginals. One loss function is applied to the output of the
discriminator, and one measures the reconstruction error from a decoder reconstructing
the input from the joint.

Thomas et al. (2017) considers a reinforcement learning setting where there is an
environment with which one can interact during training. The authors trained one pol-
icy πi(a|s) for each dimension i of the representation, such that the policy can interact
with the environment and learn how to modify the input in a way that modifies the rep-
resentation only at dimension i, without changing any other dimensions. The approach
is interesting because it is a setting similar to humans learning by interaction, and this
may be an important learning setting for agents in the future, but it is also limited to the
setting where you do have the interactive environment, and cannot be applied to other
settings discussed above, whereas our approach can.

5 Conclusions

In this paper, we have presented LΣ regularization, a novel regularization scheme based
on penalizing the covariance between dimensions of the internal representation learned
in a hierarchical model. The proposed regularization scheme helps models learn linearly
uncorrelated variables in a non-linear space. While techniques for learning independent
components follow criteria that are more strict, our solution is flexible and portable, and
can be applied to any feature-learning model that is trained with gradient descent. Our
method has no penalty on the performance on tasks evaluated in the experiments, while
it does disentangle the data.

We saw that our approach performs well applied to a standard deep convolutional
autoencoder on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009); the resulting model
performs comparable to the model withoutLΣ regularization, while we can also see that
the covariances between dimensions in the internal representation decrease drastically.
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